Multiply - Connected Regions

Consider region where \(f(z) \) is analytic in a domain bounded by \(C_0 \) and \(C_1 \).
\(Z_0 \) may or may not be a singularity.

Cauchy-Goursat Theorem

\[
\oint_{C_0} f(z)\,dz = \oint_{C_1} f(z)\,dz
\]

Proof:

Make a cut from \(C_0 \) to \(C_1 \).

Now region enclosed by \(C_1, C_0, C_2, C_3 \) encloses a region in which \(f(z) \) is analytic.

Apply Cauchy-Goursat Th to this region:

\[
\oint_{C_1} f(z)\,dz + \oint_{C_2} f(z)\,dz + \oint_{C_3} f(z)\,dz + \oint_{C_0} f(z)\,dz = 0
\]

\(C_1 \parallel C_3 \parallel C_0 \parallel C_2 \)

\(-\oint_{C_1} f(z)\,dz = \text{reverse direction of arrows on } C_1 \)

Contributions on \(C_2 \) and \(C_3 \) are equal but opposite in sign \(\rightarrow \) cancel.

\[
\oint_{C_1} f(z)\,dz = \oint_{C_0} f(z)\,dz
\]

This result is important as one can continuously shrink \(C_0 \) down onto \(C_1 \) without changing the result.

This is often referred to

This idea can be extended to multiple regions contained within \(C_0 \).

- Use \(Z_0 \) for \(C_0 \) on next pages.
Extension of Cauchy's Theorem to multiply connected domains.

Theorem: Let the inside of the pws Jordan curve γ_0 contain the disjoint piecewise smooth Jordan curves $\gamma_1, \gamma_2, \ldots, \gamma_n$, none of which is contained inside another.

Suppose $f(z)$ is analytic in a region Ω containing the set S consisting of all points on and inside γ_0 but not inside γ_k, $k=1, 2, \ldots, n$. Then

$$\int_{\gamma_0} f(z)\,dz = \sum_{k=1}^{n} \int_{\gamma_k} f(z)\,dz.$$
Proof

Connect \(x_k \) to \(x_{k+1} \) with paths and arcs \(L_k \), \(k=0,1,\ldots,n-1 \) and \(x_n \) to \(x_0 \) with \(L_n \).

Note the reversal of path on \(x_k \), \(k=1,2,\ldots,n \).

Now the upper and lower regions are decomposed into 2 simply connected domains where \(f(z) \) is analytic \(\Rightarrow \) Cauchy's theorem is satisfied in each domain. (as each curve is traversed in positive sense).

However, the integrals along \(L_k \), \(k=0,1,\ldots,n \) are evaluated in opposite sense so these cancel out \(\int_{L_k} f(z) \, dz = -\int_{L_k} f(z) \, dz \).
and the integrals over each x_k, $k = 1, 2, \ldots, n$ are the negation of the positively oriented integrals.

... adding together the individual pieces

$$\int_{x_0} f(x) \, dx - \sum_{k=1}^{n} \int_{x_k} f(x) \, dx = 0$$

Note we have used in the proof

$$\int_{-c} f(x) \, dx = -\int_{c} f(x) \, dx$$

and

$$\int_{x_1+x_2} f(x) \, dx = \int_{x_1} f(x) \, dx + \int_{x_2} f(x) \, dx$$

when x_1, x_2 are piecewise continuous Jordan arcs.

This result is crucial...