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Anisotropic terahertz response from a strong-field ionized electron-ion plasma
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A microscopic theory is adapted to compute the time-resolved terahertz (THz) probe response of a dynamically
evolving, strong-field ionized electron-ion plasma. The numerical solutions show that the relaxation of the
initially highly anisotropic carrier distributions leads to a polarization dependent short-time THz response. This
THz polarization discrimination gradually vanishes as the plasma approaches a thermodynamic equilibrium
configuration via electron-electron and electron-ion scattering. The detailed carrier-relaxation dynamics causes
a strongly nonmonotonic time-development of the THz absorption.
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I. INTRODUCTION

Ultrashort pulse (USP) photoionization plays an important
role in high harmonic generation (HHG) and in filamentation
associated with extended propagation in air. Filamentation in
high-pressure gas-filled capillaries has recently been reported
as the mechanism for generating coherent x-ray pulsed beams
via generation of the 5000th harmonic of a 3.9-μ fundamen-
tal [1]. Recent femtosecond resolved measurements of the
ionized photoelectron angular distributions using velocity map
imaging have raised fundamental questions regarding the state
of the plasma generated by the USP [2]. Full 3D quantum
Schrödinger equation simulations of an atom in a strong few-
cycle laser pulse confirm these experimental observations [3].
The latter are based on single-electron quantum calculations
and do not account for mutual scattering of the freed electrons
and ions mediated by the Coulomb potential.

In our previous investigations [4], we presented a micro-
scopic analysis of the short-time dynamics of photoionized
electrons created by an intense few-cycle laser pulse. After
the USP, the photoionized free electrons are left in a highly
anisotropic, nonequilibrium momentum distribution. On a
timescale, longer than the ionizing pulse, Coulomb scattering
of electrons and ions equilibrates the distribution toward an
electron plasma state with an isotropic Fermi-Dirac momen-
tum distribution.

To experimentally observe the transition from nonequi-
librium ionized electron distributions toward a state with
isotropic Fermi-Dirac distributions, one needs a probe that
is sensitive to the internal transitions of the system. For
the typical parameters in strong-field ionization studies, the
plasma frequency corresponds to excitations in the THz range
of the electromagnetic spectrum. Hence, we suggest optical
pump-THz probe experiments conceptually similar to those
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done in semiconductors, where Huber et al. showed “how
many-particle interactions develop after ultrafast excitation of
an electron-hole plasma” [5].

In this paper, we follow the Ansatz used by Golde et al.
[6] who calculated the THz response of a two-dimensional
(static) electron gas. By expanding the Coulomb-interacting
many-electron-ion Hamiltonian by the relevant light-matter
interaction contributions, our theory is capable of describing
the interaction of a THz probe field with our dynamical
electron distributions. Calculating the linear THz current, we
show that within an inverse plasma frequency the optical
response reflects the anisotropy of the system.

In the following sections we present our theoretical model
(Sec. II), expand the relevant equations up to the linear THz
response (Sec. III), show and discuss some representative
numerical results (Sec. IV), and finish with a short summary
(Sec. V). In the Appendix we give further information on
our Monte Carlo implementation of the Coulomb scattering
dynamics on a general purpose graphics processing unit
(GPGPU), which gives a significant speedup in comparison
to a single CPU implementation.

II. THEORETICAL MODEL

In this paper, we treat the situation where an ultrashort
strong laser pulse ionizes a hydrogen atom. Assuming a
random homogeneous distribution of ionized atoms, we use the
resulting electron-ion state as initial condition for the subse-
quent carrier dynamics. The ionization process is described by
solving the time-dependent Schrödinger equation (TDSE). For
the electron quantum kinetics, we use the Heisenberg equation-
of-motion approach evaluating the commutator between the
relevant Hamiltonian and the operator of interest −ih̄ d

dt
A =

[H,A]−. The Hamiltonian includes the free-particle kinetic
energy of the electrons and ions

Hλ
kin =

∑
λ,k

Eλ
ka+

λkaλk, with Eλ
k = h̄2k2

2mλ

. (1)
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The interaction with a classical THz field is described in the
A · p picture (velocity gauge)

HA·p � −
∑
λ,k

JTHz
λk · Aa+

λkaλk

HA·A � −
∑
λ,k

1
2 Jpond

λ · Aa+
λkaλk (2)

with JTHz
λk = qλ

mλ

h̄k and Jpond
λ = − qλ

mλ

qλA,

which is connected to the E · r picture (length gauge) by
an unitary transformation (the Göppert-Mayer Transformation
[7]). The Coulomb-interaction part of the Hamiltonian is

HC = 1

2

∑
λ,ρ,k,p,q

V
λρ

|q| a+
λka+

ρpaρp+qaλk−q,

(3)

with L3V
λρ

|q| = q2
e

ε0
[
q2 + κ2

D

] .

Here, the operator a+
λk (aλk) creates (destroys) an electron

(λ = e) or ion (λ = i) with momentum k. Sums over the
particle type λ ∈ {e,i} always include the two-fold spin
degeneracy. The momentum sums are treated in the limit
1
L3

∑
k[. . .] → 1

(2π)3

∫
[. . .]d3k when the equations are solved

numerically. The Coulomb matrix element is screened by the

inverse Debye screening length κD =
√

q2
e N tot

e

ε0kBTe
[8].

In the velocity gauge, the pondermotive current Jpond
λ is

analytically separated from the other THz current contributions
JTHz

λ . For the electrons, we obtain

Je = 1

L3

∑
e,k

[
JTHz

ek + Jpond
e

]
fek

=
[

1

L3

∑
k

qe

me

h̄k fek − ε0
(
ωe

pl

)2
A

]
(4)

with ωe
pl =

√
q2

e N
tot
e

ε0me

, N tot
e =

∑
e

Ne = 2

L3

∑
k

fek.

Here, the pondermotive part results from the HA·A Hamilto-
nian, whereas the THz current is due to the HA·p part. For the
ions, we obtain an equation similar to Eq. (4) with the main
difference that here the ion mass and ion charge enters. Due to
the large mass difference mi > 1800 me, the ion contributions
to the current can be neglected allowing us to restrict the
treatment to the electron density fek = 〈a+

ekaek〉,

h̄∂tfek = 2
∑
ρ,p

∑
q �=0

V
eρ

|q| Im[〈a+
eka+

ρpaρp+qaek−q〉], (5)

with ρ ∈ {e,i}. We ignore the influence of the complex
electron-ion polarization pe

ik = 〈a+
ekaik〉 induced by the optical

(ionizing) field since we focus on times well after this field has
decayed. The Coulomb part in the equation of motion shows
the typical many-body hierarchy problem, i.e., the coupling
of N -particle quantities to (N + 1)-particle quantities, which
has to be systematically truncated at a specified level of
correlations [9].

The two-particle correlation 〈a+
λka+

ρpaρp+qaλk−q〉 for
q �= 0, e.g., consists of single-particle contributions
−〈a+

λkaρp+q〉〈a+
ρpaλk−q〉 and true two-particle correlations

	〈a+
λka+

ρpaρp+qaλk−q〉. Since the electron-density dynamics
couples to true electron-electron and electron-ion correlations,
we additionally need the equations of motion

−ih̄∂t	〈a+
eka+

ρpaρp+qaek−q〉
= [

Ee
k + Eρ

p − Eρ
p+q − Ee

k−q + iη
]
	〈a+

eka+
ρpaρp+qaek−q〉

− [
JTHz

eq − JTHz
ρq

] · A(t)	〈a+
eka+

ρpaρp+qaek−q〉
+ [

V
eρ

|q| − V
eρ

|k−p−q|δ
e
ρ

]
[(1 − fek)(1 − fρp)fek−qfρp+q]

− [
V

eρ

|q| − V
eρ

|k−p−q|δ
e
ρ

]
[fekfρp(1 − fek−q)(1 − fρp+q)].

(6)

Here, we kept only the lowest-order factorizations and ne-
glected the coupling to other two-particle and higher-order
correlations whose main contribution is approximated by
introducing the dephasing η [9]. The last two lines of Eq. (6)
show the typical Coulomb scattering into and out of the
momentum state (e,k). Assuming slowly varying densities,
no electric field A = 0, applying the Markov approximation
to Eq. (6) and inserting the result in Eq. (5) gives the Boltzmann
Coulomb scattering dynamics of free electrons:

∂tfek|e−λ collision

= 2π

h̄

∑
p,q

V 2
|q|(1 − fek)(1 − fλp)fek−qfλp+qδ

(
	E

e,λ
k,p,q

)

− 2π

h̄

∑
p,q

V 2
|q|fekfλp(1 − fek−q)(1 − fλp+q)δ

(
	E

e,λ
k,p,q

)

with 	E
e,λ
k,p,q = h̄2|k|2 − h̄2|k − q|2

2me

+ h̄2|p|2 − h̄2|p + q|2
2mλ

,

(7)

where λ ∈ {e,i}. The δ distribution appears as the limit
πδ(x) = limη→0 Im[−1/(x + iη)] of the imaginary part of
the Markov energy denominator for small broadening η. This
equation can be used for studying the relaxation dynamics from
a nonequilibrium, anisotropic electron momentum distribution
into an isotropic equilibrium plasma. A detailed description
can be found in Ref. [4].

To compute the THz probe response of the dynamically
changing electron distributions, we have to solve the electron-
ion correlation Eq. (6) together with the equation for the
electron density, Eq. (5). The detailed correlation dynamics
Eq. (6) can be simplified by taking advantage of the fact
that we are dealing with a dilute gas configuration. Due to
the large mass difference, the ion energies can be neglected
in comparison to electronic energies, i.e., Ee

k + Ei
p − Ei

p+q −
Ee

k−q � Ee
k − Ee

k−q. For the same reasons, the ion current-
matrix element JTHz

ik−q can be neglected in comparison to the
electron current-matrix element JTHz

ek−q. Furthermore, the ionic
momentum-state occupation probabilities are way smaller
than unity. Therefore, we can use (1 − fik) � 1 and

∑
p(1 −

fip)fip+q = ∑
p(1 − fip+q)fip � L3Ni . Defining the reduced

033106-2



ANISOTROPIC TERAHERTZ RESPONSE FROM A STRONG- . . . PHYSICAL REVIEW E 87, 033106 (2013)

electron-ion correlation,

Cei
k,k−q =

∑
p

	〈a+
eka+

ipaip+qaek−q〉 , (8)

Eq. (6) transforms into

−ih̄∂tC
ei
k,q

= [
Ee

k − Ee
q − (

JTHz
ek−q − JTHz

ik−q

) · A(t) + iη
]
Cei

k,q

−V ei
|k−q|[fek − feq]L3Ni, (9)

where the ions enter only via the integrated ion density Ni =
1
L3

∑
k fik. This equation, together with the density equation

of motion,

h̄∂tfek = 2
∑
i,q �=k

Im
[
V ei

|k−q|C
ei
k,q

] + h̄∂tfek|e−e collision, (10)

describe the THz probe response of the electron momentum
distributions.

III. THZ PROBE FIELD EXPANSION

Depending on the carrier envelope phase, the electron
momentum distributions created by ultrashort few-cycle pulse
ionization often show an asymmetry along the polarization
direction of the light field. Therefore, the average momentum
of these distributions is nonvanishing and leads to a finite
electron current even without the THz probe field. A very
effective procedure for separating these current contributions
is to expand the equations in the order of the THz field A.
Since we are interested only in the linear THz probe response
of the electron-ion system, we only need the zeroth- and
first-order contributions. In zeroth order, i.e., without the probe
field, we have to solve the Boltzmann collision dynamics
Eq. (7). The resulting time-dependent distributions—labeled

here explicitly as f
(0)
ek —are used as input for the first-order

density equationw

h̄∂tf
(1)
ek = 2

∑
q

V ei
|k−q|ImC

ei(1)
k,q − �f

(1)
ek , (11)

where the true scattering contributions are treated using the
relaxation time approximation

∂tfek|e−e collision � i�
[
f

(FD)
ek − fek

]
.

Here, f (FD)
ek is the final Fermi-Dirac distribution. The coupling

to the THz field is governed by the first-order electron-ion
correlation through[−ih̄∂t − (

Ee
k − Ee

q + iη
)]

L3V ei
|k−q|C

ei(1)
k,q

= N tot
i

(
L3V ei

|k−q|
)2(

f (1)
eq − f

(1)
ek

)
− JTHz

ek−q · A(t) L3V ei
|k−q|C

ei(0)
k,q . (12)

For the solution of this equation we explicitly need the
dynamics of the zeroth-order electron-ion correlation,[−ih̄∂t − (

Ee
k − Ee

q + iη
)]

V ei
|k−q|C

ei(0)
k,q

= (
V ei

|k−q|
)2(

f (0)
eq − f

(0)
ek

)
L3N tot

i , (13)

which we solve in Markov approximation

L3V ei
|k−q|C

ei(0)
k,q � N tot

i

(
L3V ei

|k−q|
)2 f

(0)
ek − f

(0)
eq

Ee
k − Ee

q + iη
. (14)

For the further treatment, we Fourier transform the first-order
equation

f (ω) := Fω[f (t)] =
∫ ∞

−∞
e−iωtf (t)dt . (15)

Inserting the correlation contributions into Eq. (11) yields

(h̄ω + i�)f (1)
ek (ω) = 1

L3

∑
q

N tot
i

(
L3V ei

|k−q|
)2

{
f

(1)
ek (ω) − f

(1)
eq (ω)

Ee
k − Ee

q + h̄ω + iη
+ JTHz

ek−q · Fω

[
A(t)

(
f

(0)
ek (t) − f

(0)
eq (t)

)]
[
Ee

k − Ee
q + h̄ω + iη

] [
Ee

k − Ee
q + iη

]
}

− 1

L3

∑
q

N tot
i

(
L3V ei

|k−q|
)3

{
f

(1)
eq (ω) − f

(1)
ek (ω)

Ee
q − Ee

k + h̄ω + iη
+ JTHz

eq−k · Fω

[
A(t)

(
f

(0)
eq (t) − f

(0)
ek (t)

)]
[
Ee

q − Ee
k + h̄ω + iη

] [
Ee

q − Ee
k + iη

]
}

. (16)

Here, the second line equals the right-hand side of the first line if one interchanges k ↔ q. Mathematically, this equation is
an inhomogeneous Fredholm (integral) equation of the second kind, which can be solved by the Nyström method [10]. The
inhomogeneity results from the zeroth-order electron-ion correlation. If f

(1)
ek (Ai) is a solution for the field Ai , then

∑
i f

(1)
ek (Ai)

is a solution for the field
∑

i Ai , which is the justification for the δ-pulse analysis we use in Sec. IV. The symmetry of Eq. (16)
can be seen easily, once we calculate the electron THz current

1

L3

∑
k

JTHz
ek f

(1)
ek (ω) = 1

L6

∑
k,q

JTHz
ek−q

(
L3V ei

|k−q|
)2

h̄ω + i�

×
{

f
(1)
ek (ω) − f

(1)
eq (ω)

Ee
k − Ee

q + h̄ω + iη
+ JTHz

eq−k · Fω

[
A(t)

(
f

(0)
eq (t) − f

(0)
ek (t)

)]
[
Ee

q − Ee
k + h̄ω + iη

] [
Ee

q − Ee
k + iη

]
}

, (17)

where both contributions are merged in one line. In our
numerical analysis, we use this equation for convergence
tests. Once we know the current, we can calculate the linear

susceptibility,

χ (ω) = J (ω)

ε0ω2A(ω)
, (18)
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and thereby the dielectric function [6],

ε(ω) = ε0

(
1 − ω2

pl

ω2

)
+ J (ω)

ε0ω2A(ω)
, (19)

where in both formulas the current and the linear THz
polarization point in the same direction. In the following
section, we solve these equations numerically, discuss the
numerical techniques, and present our results.

IV. NUMERICAL SOLUTION AND RESULTS

Taking advantage of the significant separation of
timescales, we simplify the analysis of the full problem by
splitting it into three parts: the strong field photoionization
with an ultrashort pulse, the subsequent free electron scattering
dynamics, and the linear THz spectroscopy, which probes
but does not modify the electron relaxation dynamics. The
ionization problem is treated by solving the TDSE for a single
hydrogen atom:

ih̄∂t�(ρ,z; t) =
[

p2

2me

− e2

4πε0r
+ eEz(t)z

]
�(ρ,z; t).

(20)

We assume that the ionizing electric field is a sin2-shaped
10-cycle pulse (total duration: 13.33 fs), linearly polarized in
z direction, with the center wavelength 400 nm, and a peak
intensity of 5 × 1013 W/cm2. Here, r is the electron’s space
coordinate relative to the nucleus and p is the momentum
operator, both given in cylindrical coordinates. For a detailed
description of the numerical methods used for the solution of
the TDSE, we refer to Ref. [11].

To treat the electron Coulomb dynamics, we use a Monte
Carlo scheme [4]. Here, the distribution is represented as
an ensemble of individual particles whose initial momenta
are randomly created using the TDSE-calculated free-electron
wavefunctions to generate the initial probability distribution.
In the Monte Carlo dynamic evolution, these momenta
are changed by random scattering events according to the
corresponding scattering probabilities and rates. The resulting
histograms extracted from these distributions show stochastic
noise in momentum and time. We reduce this noise by
averaging 10 runs with 107 particles and remove the residual
noise with a low-pass filter. More calculational details can be
found in the Appendix, where we also give further information
on our GPU implementation of the Monte Carlo code.

Equation (16) is solved on a discrete spherical momentum
grid (variables k = |k|,θ ,φ). For the broadenings, we use
� = 5 meV and η = 20 meV. Due to the fact that the zeroth-
order distributions are φ-angle independent, the φ integration
can always be evaluated analytically. Here, we calculate
f

(1)
ek (ω)/cos(φk) instead of f

(1)
ek (ω), which is used for the

z-polarized probe fields. In both cases, it can be analytically
shown that the result is independent of the angle φ. The biggest
challenge in solving the Fredholm integral Eq. (16) results
from the very large differences between the energy expression
in the denominators. The electronic energies are in the range
of few election volts (Ee

k � 38.0 k2 meV for k in [1/nm]),
but the energy h̄ω (h̄ωe

pl � 17.0 meV) and the broadening η is
only several millielectron volts, which requires an extremely

fine k grid. In our numerical implementation, we resolve the
zeroth-order electron density with 150 k- and 128 θ -points,
which are equidistantly distributed. However, in order to
obtain numerical convergence and stability in the solution of
Eq. (16), we would need approximately 2000 k points. Since
the full numerical solution on such fine grid would increase
the numerical effort by at least two orders of magnitude, we
solve the integral equation on the original coarse grid and
use a quintic Hermite interpolation inside the integral. The
corresponding matrix in the Nyström approximation is still
larger than 5 GB, which makes a direct matrix inversion
very inefficient. Therefore, we apply the iterative GMRES
algorithm [12,13].

The anisotropic distribution of the free electrons directly
after the ionization is shown in Fig. 1(a). Whereas we have
full rotational symmetry around the polarization axis, strongly
anisotropic signatures show up as prominent peaks in the kz-kρ

plane. Calculating θ -angle averaged distributions, the initial
density features several orders of multiphoton ionization,
which are separated by one photon energy as can be seen,
e.g., by the black curve in Fig. 1(e). In the subsequent
dynamic evolution, these features are smeared out and the
anisotropy is reduced due to electron-electron and electron-ion
scattering. After 400 fs the distribution is almost isotropic and
hardly distinguishable from the final Fermi-Dirac equilibrium
distribution.

As an experimentally viable test of the anisotropy, we
compute the linear THz probe response assuming a Gaussian
THz pulse A(t) with 50 fs FWHM. We choose z and x

polarization here, but the result for an arbitrary polarization
direction perpendicular to the z axis would be identical due
to the symmetry of the distribution. The THz pulse is delayed
relative to the time of the initial distribution t = 0 ps, which
is the time when the ionizing pulse is completely gone and
the free particle distribution of the TDSE calculation becomes
static. We center the THz pulse at 0.1 ps, 0.2 ps, and 0.4 ps,
where the snapshots of Fig. 1 are taken omitting the 0.0 ps
results to avoid an overlap with the ionizing pulse. Figure 2
shows the absolute value of J

pond
e and J THz

e for different
frequencies ω. The pondermotive current does not change
since, for the chosen delays, the total density is constant during
the THz probing, whereas the linear THz current reflects the
anisotropy of the underlying momentum distributions. This
current is, e.g., responsible for the broadening �Drude in a
simplified Drude treatment of the plasma contributions on the
dielectric function:

ε(ω) = ε0

(
1 − ω

pl
e

2

ω(ω + i�Drude)

)
.

To obtain more insights into the THz response directly after
the ionization, we replace the 50-fs THz pulse by an ultrashort
pulse. Examples of the results are shown in Fig. 3, where we
plot the inverse dielectric function Eq. (19). We note the typical
resonance near the plasma frequency in the imaginary part fea-
tures, whereas the real part shows the characteristic dispersive
shape. The changes for x-polarized THz probe fields are less
pronounced than the ones for the z-polarized case. Here, we
even observe THz gain directly after the ionization instead of
the usual THz absorption. This implies a light-field-induced
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FIG. 1. (Color online) Relaxation of an anisotropic nonequilib-
rium electron distribution created by ionizing hydrogen atoms with
a 400-nm 10-cycle pulse of intensity I = 5 × 1013 W/cm2. Top:
k2f (k,θ ) for different times (a) t = 0.0 ps, (b) t = 0.1 ps, (c) t =
0.2 ps, (d) t = 0.4 ps. Bottom: in (e) the angle averaged distribution
k2〈f (k,θ )〉θ = (k2/2)

∫ π

0 f (k,θ ) sin(θ )dθ for the same times. The
shaded area shows the final Fermi Dirac distribution with temperature
T = 13 878 K corresponding to an average energy of Ē = 1.794 eV.
The total electron density is N tot

e = 2.086 × 1023/m3 yielding the
inverse 3D plasma frequency of approximately 1/fpl(Ne) = 0.244 ps.

FIG. 2. (Color online) Absolute value of the current |J | =√
re[J ]2 + im[J ]2, which is induced by the THz probe field A(ω).

Here, we assume an either x- or z-polarized Gaussian pulse with a
FWHM of 50 fs and a delay of 0.1 ps, 0.2 ps, and 0.4 ps, relative
to the time of the initial TDSE distribution. As a consequence of the
carrier anisotropy, the current is also anisotropic for short times and
becomes fully isotropic for longer delay times due to the Coulombic
scattering events. The characteristic time scale is determined by the
inverse plasma frequency.

FIG. 3. (Color online) Inverse dielectric function for pulse delays
of 0.0 ps, 0.1 ps, 0.2 ps, and 0.4 ps, relative to the time of the
initial TDSE distribution. The A field is an either x-polarized or z-
polarized pulse. The final isotropic Fermi-Dirac distribution is shown
as reference (shaded area).

transient population inversion between the THz-coupled an-
gular momentum eigenstates of the hydrogen system.

V. SUMMARY

In this paper, we present a microscopic model to describe
the complex dynamics observable in a THz probe experiment
of the momentum anisotropy of ultrashort-pulse ionized
electron-ion systems. For the model case of hydrogen, we
show that this anisotropy influences the electronic properties
of the system. Our initial distribution produces THz gain for
z-polarized THz probe fields, whereas all other cases have a
purely absorptive behavior. It will be interesting to see to which
degree the early-time anisotropic plasma relaxation manifests
itself also in the optical response and influences the pulse
propagation and filamentation dynamics. These features are
subjects of ongoing studies.

ACKNOWLEDGMENTS

We appreciate many stimulating discussions with E.M.
Wright. B.P. thanks D. Vasileska, S. M. Goodnick, and
D. K. Ferry for a helpful introduction to the Monte Carlo

033106-5



B. PASENOW et al. PHYSICAL REVIEW E 87, 033106 (2013)

method. We acknowledge financial support through the
AFOSR MURI “Mathematical Modeling and Experimental
Validation of Ultrafast Nonlinear Light-Matter Coupling asso-
ciated with Filamentation in Transparent Media”, Grant No.
FA9550-10-1-0561 and partial support through AFOSR Grant
No. FA9550-10-1-0064.

APPENDIX: GPU CALCULATION

To solve the high-dimensional integrodifferential Eq. (7),
we employ the Monte Carlo method implemented on a general
purpose graphics processing unit (GPU). A GPU is essentially
an accelerated coprocessor, attached to a host computer, on
which certain compute intensive functions may be efficiently
executed. In comparison to traditional CPUs, which may
have 4, 8, or 12 processing cores, typical GPUs consists of
hundreds (or potentially thousands) of processor cores that
operate in parallel, executing single instruction on multiple
data (SIDM architecture). In addition, a GPU contains its own
onboard memory, which is roughly 10 times faster than the
main memory of standard personal computers. The highly
data-parallel and memory bandwidth intensive nature of the
Monte Carlo method makes it an excellent candidate for GPU
performance scaling. For the comparison between our CPU
and GPU implementation, we compare an 8 core workstation
(dual processor Intel Xeon X5677 Quad core 3.75 GHz) with
an nVidia GTX 480 GPU. In this comparison, we achieve
a threefold speedup in our algorithm executing on the GPU
compared to an equivalent OpenMP implementation executing
in parallel on all 8 cores of the workstation.

An essential requirement for effective Monte Carlo GPU
calculations is that one can deal with single-particle scattering
events (Fig. 4), which is given by standard Monte Carlo
algorithm even for two-particle Coulomb scattering [14,15],
which we solve with the self-scattering technique [16]. Due
to the large mass difference, the electron-ion scattering rates
depend only on the total ion density, which effectively
decouples the electron from the ion dynamics. For the electron-
electron scattering, an individual particle scatters with another
particle taken out of the reference electron distribution. At the
scattering time, the scattering mechanism (electron-electron,
electron-ion, self-scattering), the particle’s new momentum,
and time of the next scattering event is randomly calculated
according to the corresponding probabilities. However, the
reference ensemble remains unchanged and is only updated
with the current particle momenta after a dt timestep. There-
fore, we have two different times, the particle’s individual
scattering time, i.e., the point in time when the particle will be
scattering next, and the synchronization time, i.e., the time at
which the reference particle distributions are updated. Within

FIG. 4. (Color online) Monte Carlo scattering of N particles.
The arrow ends indicate scattering events. The scattering rates and
times as well as the particle’s final momentum after the scattering
are calculated with the current reference distribution from the last
synchronization (indicated as vertical lines), which takes place after
all scatterings within a dt timestep are done. Generally, a particle can
have zero, one, or even many scattering events between two adjacent
synchronization points.

a timestep, an electron can have none, one, or even many
scatterings, but the timestep must be sufficiently small so that
the reference distribution changes only slightly in comparison
to the previous one.

In our implementation, we launch 107 independent threads
of execution, each of which is responsible for one particle’s
scattering dynamics. These 107 threads are automatically
multiplexed onto the 480 processing cores available in the
GPU by a dedicated hardware scheduler in the GPU. Each
thread manages its own linear congruential random number
generator based on Marsaglia’s Xorshift Random Number
Generator as described in Numerical Recipes in C++ [10].
A thread uses its random number generator many times during
a scattering event. After a fixed number of timesteps, the
reference distribution is copied back to the CPU memory
to evaluate the histograms. Afterwards, the GPU calculation
starts again.

The limiting bottleneck of our algorithm is that all threads
must perform a global synchronization after every timestep.
This synchronization must be complete before a thread can
retrieve the stored state of its next scattering partner from
global memory at the beginning of each simulation timestep.
However, not every particle has a scattering event during every
single timestep; there are many self-scatterings, i.e., a virtual
scattering, where the particle momentum is unchanged, and the
calculation time of different scattering events is not equal. But
even with these restrictions, we still gain a significant speedup
in comparison to a single- or many-core CPU calculations.
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