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We demonstrate analytically and experimentally that a circular abruptly autofocusing (AAF) Airy beam can be
generated by Fourier-transforming an appropriately apodized Bessel beam whose radial oscillations are chirped
by a cubic phase term. Depending on the relation between the chirp rate and the focal distance of the Fourier-
transforming lens, it is possible to generate AAF beams with one or two foci, the latter case leading to the formation
of an elegant paraboloid optical bottle. © 2011 Optical Society of America
OCIS codes: 050.1940, 260.2030, 350.5500.

Abruptly autofocusing (AAF) beams constitute a newly
introduced species of (2þ 1)D light waves that are able
to focus their power right before a target is reached [1].
Circular Airy beams (CAB), i.e. circularly symmetric
beams with Airy radial profile, were the first AAF beams
to be proposed. Because of the inward, diffraction-
resisting radial acceleration of the Airy wave function,
the beam’s intensity rings contract towards the axis with
minimum shape distortion, hence keeping the maximum
intensity constant along the entire path between source
and focus. The main (inner) intensity ring writes a
paraboloid caustic surface of revolution in space that col-
lapses on-axis at a point of maximum amplitude gradient,
right before the intended focus [2]. As was first predicted
theoretically [1] and subsequently observed experimen-
tally [3,4], these properties allow AAF beams to achieve
power delivery within smaller focal volumes and at
longer focal distances, as compared to classic Gaussian
beams of comparable initial width. For these reasons,
AAF waves are envisaged to find major applications
in laser medicine and other linear or nonlinear optical
settings.
An optical beam can be generated either directly in the

real space or indirectly in the Fourier-space. In the latter
case, the Fourier-transform (FT) of the beam is gener-
ated first and then Fourier-transformed back into the real
space by a lens. This technique has been especially suc-
cessful for 1D and 2D finite-energy Airy beams, whose FT
is known analytically [5]. Unfortunately, so far no analy-
tical expression has been found for the FT of a CAB
and hence its generation relies on the numerically com-
puted FT.
In this Letter, a highly accurate closed-form expression

is reported for the FT of a CAB. Through asymptotic anal-
ysis, we show that the FT behaves like a J0 Bessel func-
tion that oscillates with a quadratic chirp rate due to an
additional cubic phase term. The FT amplitude is apo-
dized by the product of a Gaussian function with another
function that scales quadratically. The derived FT can be
used to define beams that evolve into AAF beams with
desired characteristics after being Fourier-transformed

by a thin lens. We show that, depending on the relation
between the chirp rate and the lens’ focal distance, an
AAF beam can have one or two foci. In the second case,
the two foci are symmetric with respect to the lens’ focal
plane, thus creating an elegant optical bottle with
paraboloid multilayer boundaries and two closed ends.
Experimentally, we successfully demonstrate such an
optical bottle using a CAB. Our finding also explains
the morphing of AAF beams to expanding Bessel-like
beams in the Fraunhofer region [6,7]. Moreover, knowl-
edge of the FT provides control over the transition from
CABs into Bessel-like beams or optical bottle beams, that
can be very useful in particle guiding and trapping appli-
cations [7–9].

To begin, consider the input amplitude of a CAB

uðrÞ ¼ Aiðr0 − rÞ exp½aðr0 − rÞ�; ð1Þ

where r is the scaled polar distance, r0 þ 1 is approxi-
mately the radius of the main ring and a is the apodiza-
tion rate. The (2D) FT of this circularly symmetric
wavefront is expressed as a Hankel-transform integral

UðkÞ ¼
Z

∞

0
uðxÞJ0ðkxÞxdx: ð2Þ

The key assumption to our derivation is that, if r0 is
sufficiently large, this integral can be extended to −∞

without affecting the result, because of the strongly de-
caying Airy function. Alternatively, using the slightly
modified initial condition uðrÞ − uð−rÞ, the above integral
goes from −∞ to ∞. By introducing the function gðxÞ ¼
ðr0 − xÞAiðxÞ expðaxÞ, Eq. (2) becomes a convolution in-
tegral, which by the convolution theorem, becomes

UðkÞ ¼ 1
2π

Z
∞

−∞

GðωÞWðω; kÞeiωr0dω; ð3Þ

where G andW are, respectively, the 1D FTs of functions
gðxÞ and J0ðkxÞ, which are known in closed form:
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GðωÞ ¼ ½r0 þ ðωþ iaÞ2� exp½iðωþ iaÞ3=3�;

WðωÞ ¼
�

2ðk2 − ω2Þ−1=2; jωj < k

0; jωj > k
: ð4Þ

Note that, to derive GðωÞ we have used the FT of the
finite-power 1D Airy beam [5]. Since WðωÞ vanishes for
jωj > k, the integral of Eq. (3) is essentially carried out
over the finite interval ð−k; kÞ. Changing the integration
variable by ω ¼ k cosφwe obtain

UðkÞ ¼
Z π

0
FðφÞeiQðφÞdφ; ð5Þ

where

πFðφÞ ¼ ½r0 þ ðk cosφþ iaÞ2� expða3=3 − ak2 cos2 φÞ;
QðφÞ ¼ ðk3=3Þ cos3 φþ kðr0 − a2Þ cosφ: ð6Þ

Equation (5) is very convenient because the inte-
grand oscillates rapidly with increasing k, suggesting a
stationary-phase approach with k being the large param-
eter required. There are two stationary points, namely
φ ¼ 0, π, whose total contribution is

USPðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

−Q00ð0Þ

s
Re½Fð0Þ expðiQð0Þ − iπ=4Þ�; ð7Þ

where Q00ð0Þ ¼ −k3 − kðr0 − a2Þ. A comparison of Eq. (7)
with the result obtained by numerically integrating
Eq. (2) reveals its high accuracy even for k < 1. In fact,
the only shortcoming of Eq. (7) seems to be its divergent
k−1=2 behavior as k → 0. The correct limit for k → 0 is ob-
tained from Eq. (2), using the integral representation of
Bessel function and equals ðr0 − a2ÞJ0½ðr0 − a2Þk� or
≈r0J0ðkr0Þ, since the apodization rate is normally small
(order of 0.1). Now, in order to combine the two obtained
asymptotic expressions into a uniform one, we define the
function

VðkÞ ¼ ðr0 þ k2Þe−ak2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr0 þ k3=3

kr0 þ k3

s
J0ðkr0 þ k3=3Þ; ð8Þ

which is easily shown to behave correctly in both limits.
Indeed, for k → 0, VðkÞ → r0J0ðkr0Þ, while, for large k, it
agrees with Eq. (7), taking into account the asymptotic
expression J0ðxÞ ≈

ffiffiffiffiffiffiffiffiffiffiffi
2=πx

p
cosðx − π=4Þ, and assuming a

small a so that ImfFð0Þg can be ignored. Moreover, it
turns out that the accuracy of Eq. (8) is surprisingly high
throughout the spectrum, as deduced by comparing it to
the numerically computed FT from Eq. (2). An example is
shown in Fig. 1(a) for a typical CAB.
Equation (8) is a central result to this Letter, being the

first closed-form approximation reported for the FT of a
CAB. The FT behaves proportionally to a J0 Bessel
function whose phase is enhanced by a cubic term,
i.e. it oscillates with a quadratic chirp rate. The FT am-
plitude is modulated by a function that scales quadrati-
cally and apodized by a Gaussian function that decays
faster with increasing decay rate a. There is an additional

square-root factor that varies monotonically from 1 to
3−1=2. For an ideal infinite-power CAB (a ¼ 0), the FT
envelope diverges at infinity as k1=2.

The morphing of AAF beams into Bessel-like beams in
the far-field is now fully understood: For beams propagat-
ing according to the scaled paraxial equation 2uz ¼
i∇2

t u, the wave amplitude in the Fraunhofer region is
uðr; zÞ ¼ expðir2=2zÞUðr=zÞ=iz, where U is the FT of
uðr; 0Þ. After Eq. (8), the far-field amplitude of an AAF
beam is proportional to J0ðr0r=zþ r3=3z3Þ, which is just
a Bessel function! Using Eq. (8), the shape of the ob-
tained beam can be controlled through r0, z, and a.

The previous analysis can be applied to outward accel-
erating CABs, too. These beams have an input amplitude
Aiðr − r0Þ exp½aðr − r0Þ�, i.e. inward developing intensity
rings and, although they are not AAF waves, they have
also been studied experimentally and used to produce
Bessel-like beams in the far-field [7]. Then, provided that
r0 is sufficiently large, so that the input amplitude near
the beam axis is negligible, the FT for k <

ffiffiffiffiffi
r0

p
is approxi-

mated by Eq. (8), with (r0 þ k2) replaced by (r0 − k2)
and with k3 replaced by −k3. Therefore, outward
CABs also morph into chirped Bessel-like beams and, in-
versely, they can be generated by Fourier-transforming
such beams.

Let us now use Eq. (8) to design AAF beams. Assume
the input amplitude wðr; 0Þ ¼ Vðr=cÞ=c, with r0 ¼ c,
where r is the polar distance scaled by the arbitrary
length x0 and c determines the chirp rate. While propa-
gating, the beam passes through a thin lens with focal
distance f (scaled by 2πx20=λ, λ being the wavelength) po-
sitioned at z ¼ f . By the lens’ FT property, the wave at
the back focal plane (z ¼ 2f ) is given by −ði=f ÞWðr=f Þ,
where W is the FT of wðr; 0Þ. Since V is approximately
the FT of the beam of Eq. (1), it follows that

wðr; 2f Þ ≅ −iðc=f ÞAiðc − cr=f Þ exp½aðc − cr=f Þ�; ð9Þ

i.e. the beam at the back focal plane is a scaled by c=f
CAB with main-ring radius f þ f =c and apodization rate
a. Ray optics in the half-space z > f show that the
paraboloid caustic surface of revolution r ¼ f − c3ðz −
2f Þ2=4f 3 is formed. For c > ð2f Þ2=3, which we term as
the weak-chirp regime, this caustic collapses at two
on-axis points: z ¼ 2f∓Lwhere L ¼ 2f 2c−3=2 and two foci
are created behind the lens. For c < ð2f Þ2=3 (strong-chirp
regime), there is one focus behind the lens and another
one in front of it, approximately at z ¼ ð1=2Þc3=2; a result
of the collapse of the caustic surface of revolution

Fig. 1. (Color online) (a) FTof aCABwith r0 ¼ 10, a ¼ 0:05, as
given by Eq. (2) (blue line) and by Eq. (8) (red dots). (b),(c) Full-
wave simulation of CABs generated by Fourier–transforming
chirped Bessel beams. The dashed lines indicate the lens with
f ¼ 10. c ¼ 10 in (b) and C ¼ 6 in (c), while a ¼ 0:05.
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r ¼ c3=ð4zÞ − z, created by the chirped Bessel beam
itself.
Examples of these two distinct regimes are shown in

Fig. 1, computed numerically using Hankel transforms
[1]. In Fig. 1(b), the weak-chirp case, the Bessel-like input
beam propagates nearly diffraction-free before the lens.
After being focused, it forms a paraboloid caustic surface
that collapses at two mirror-symmetric foci, with respect
to z ¼ 2f . The “defocusing-to-focusing” effect creates
an elegant optical bottle with multilayer, paraboloid
intensity boundaries and an almost perfect Ai2 radial de-
pendence. The length and width of the bottle are approxi-
mately 2L and 2f , respectively, and can be controlled for
optical-trapping applications. On the other hand, in the
strong-chirp case of Fig. 1(c), the input beam forms
quickly a caustic surface of revolution that collapses
to a focus before the lens and then starts to diffract.
The diffraction is inhibited by the lens and a parabolic
caustic with outward launch angle is created that finally
collapses at a single distant focus.
To experimentally verify our theoretical predictions,

we employed a setup similar to that used in our previous
demonstration of AAF CABs [7]. A spatial light modulator
(SLM) was programmed with the off-axis hologram ob-
tained by computing the interference between a plane
wave and a Bessel beam with a cubic phase chirp and
shown in Fig. 2(e). Then, a Gaussian beam from a Coher-
ent Verdi laser (λ ¼ 532 nm) was sent through the
reflection-type SLM (Holoeye LC-R 2500 with 1024×
768 pixels) to retrieve the hologram [9]. The phase-
chirped Bessel beam was finally turned into an optical
bottle by a FT lens. Beam propagation method (BPM) re-
sults corresponding to this arrangement are shown in
Fig. 2, illustrating clearly the formation of an optical bot-
tle with multilayer paraboloid boundaries and two closed
ends. The experimental results are displayed in Fig. 3,
where the side-view photograph of Fig. 3(a) was taken
from scattered light and the transverse intensity patterns
were recorded directly with a CCD camera. The fine mul-
tilayer structure at the bottle waist and two closed ends
are clearly visible in Figs. 3(b)–3(d). These observations
are in good agreement with the results of BPM (Fig. 2)
and with the full-wave simulations (Fig. 1). It should
be pointed out that the optical bottle produced this
way has two completely closed ends, in contrast to those

generated earlier from optical vortex beams [8,9]. Such a
perfectly closed bottle might be particularly useful for
stable trapping andmanipulation of nano- andmicrosized
particles. Note that, as shown by Eq. (9), the size of the
generated bottle can be reduced at will (and without los-
ing its mirror symmetry) by employing a FT-lens with a
smaller focal distance.

In conclusion, we have set the analytical ground for
engineering AAF waves in the Fourier-space and shown
how CABs can form elegant paraboloid optical bottles.
The theoretical predictions were verified by experimen-
tal demonstrations. Our findings reveal a connection be-
tween AAF waves and Bessel beams with a nonlinear
argument that is a potential starting point for conceiving
new ways for generating AAF waves.
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Fig. 2. (Color online) BPM simulation of optical bottle genera-
tion from a CAB. (a) Side-view of the bottle beam dynamics nu-
merically retrieved from the computer−generated hologram (e);
(b)–(d) Transverse intensity patterns taken at planes 1–3
marked in (a); (e) a typical off-axis hologram.

Fig. 3. (Color online) Experimental results of an optical bottle
beam generated using the hologram of Fig. 2(e). (a) Side-view
photo of the bottle beam taken from scattered light; (b)–
(d) transverse intensity snapshots at planes 1–3 marked in (a).
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