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We introduce a new class of ð2þ 1ÞD spatial and ð3þ 1ÞD spatiotemporal waves that tend to autofocus in an abrupt
fashion. While the maximum intensity of such a radial wave remains almost constant during propagation, it sud-
denly increases by orders of magnitude right before its focal point. These waves can be generated through the use of
radially symmetric Airy waves or by appropriately superimposing Airy wave packets. Possible applications of such
abruptly focusing beams are also discussed. © 2010 Optical Society of America
OCIS codes: 050.1940, 260.2030, 350.5500.

The focusing characteristics of optical beams have al-
ways been an issue of great practical importance [1].
In general, a wave tends to focus or defocus whenever
its initial phase and/or amplitude have been suitably ma-
nipulated. In the case of a Gaussian wavefront—perhaps
the most prevalent of all beams—the peak intensity fol-
lows a Lorentzian distribution around the focus or mini-
mum waist point. Their corresponding higher-order
modes (Hermite– or Laguerre–Gaussian) also behave
in a similar manner [1,2]. On the other hand, the respec-
tive behavior of other families of waves can be consider-
ably more involved, especially close to the focus.
For many applications it is crucial that a beam abruptly

focuses its energy right before a targetwhilemaintaining a
low intensity profile until that very moment. Ideally, this
should be a linear property of the wave itself and not the
outcome of any self-focusing effects [2]. In medical laser
treatments this feature may be highly desirable, since the
wave should only affect the intended area while leaving
any preceding tissue intact [3]. In several experimental
settings, such behavior can also be useful in suddenly
“igniting” a particular nonlinear process, such as multi-
photon absorption, stimulated Raman, and optical fila-
ments in gases, locally only after the focus [4–7]. This
will ensure that no energy is nonlinearly lost due to gra-
dual focusing effects, for example, as is the case of Gaus-
sian beams. To realize this fascinating prospect, it is,
therefore, important to identify a new class of optical
beams for which the internal energy flux tends to
accumulate at the focus in an accelerated manner during
propagation.
In this Letter, we introduce new families of radially sym-

metric (cylindrical and spherical) waves with this desired
characteristic: their maximum intensity remains almost
constant during propagation, while close to a particular
focal point, they suddenly autofocus and, as a result, their
peak intensity can increase by orders of magnitude. In
two dimensions, we present two different classes of such
waves, which are based on a radial Airy profile and a
superposition of two-dimensional Airy wave packets. In
three dimensions, the spatiotemporal problem is exactly
solved in the region of anomalous dispersion. In this latter
case, even higher intensity contrasts are expected.
Let us start by considering the diffraction of a radially

symmetric beam (i.e., a beam that in cylindrical spatial
coordinates depends only on r and z) propagating in a

linear medium. In the paraxial approximation, the beam
dynamics satisfy

uz ¼ ði=2Þðuxx þ uyyÞ ¼ ði=2Þður=r þ urrÞ; ð1Þ

where u is the amplitude of the optical wave, x, y are the
scaled transverse coordinates, and z is the propagation
distance normalized in Rayleigh lengths. For a given va-
lue of the wavelength, it depends on the spatial normal-
ization factor x0 whether paraxiality is satisfied. The
propagation of an arbitrary radially symmetric initial con-
dition uðr; z ¼ 0Þ ¼ u0ðrÞ can be computed in terms of
the following Hankel transform pair:

uðr; zÞ ¼ 1
2π

Z∞

0

dkk~u0ðkÞJ0ðkrÞe−ik2z=2; ð2Þ

~u0ðkÞ ¼ 2π
Z∞

0

drru0ðrÞJ0ðkrÞ: ð3Þ

In the one-dimensional limit, Eq. (1) is known to
support the following accelerating Airy beam [8,9]:

gðx; zÞ ¼ Aiðx − z2=4þ iαzÞ exp½ið6α2z − 6iαð2x − z2Þ
þ 6xz − z3Þ=12�: ð4Þ

In Eq. (4), the decay parameter α ensures that the wave
conveys finite energy (is thus realizable) and is typically
small, so that the behavior of this wave approximates in
many respects [8,9] that of an ideal (α ¼ 0) diffraction-
free Airy wave packet [10]. Perhaps the most intriguing
feature of this solution is its lateral parabolic accel-
eration.

Let us analyze the dynamics of radially symmetric Airy
beamsof the formu0ðrÞ ¼ Aiðr0 − rÞ exp½αðr0 − rÞ�,where
r0 is the initial radius of the main ring. For r < r0, the Airy
beam decays exponentially, whereas the slowly decaying
oscillations of the Airy tails occur outside this region. The
power that the Airy beam carries is given by P ¼ 2π

R
∞
0 j

u0ðrÞj2rdr ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2αÞp

e2α
3=3½r0 þ ð1 − 4α3Þ=ð4αÞ�. In the

computation of the above integral, we extended the lower
limit of integration from zero to minus infinity. Note that
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this approximation does not affect the value of the inte-
gral, even for relatively small values of r0, due to the
exponential decay of the solution.
In Fig. 1(a), the amplitude of this cylindrical Airy beam

is depicted as a function of z. If r0 is large enough, then,
during the initial stages of propagation, all the power is
essentially located far from the center. As a result, the first
termon the right-hand side of Eq. (1) is not significant, i.e.,
∇2

⊥
u ≈ urr . Thus, Eq. (4), with x → r0 − r, can approxi-

mate the radial dynamics. From Eq. (4), one may expect
that the maximum value of the amplitude is going to
slowly decrease along z. On the other hand, as z increases,
the radius of the Airy beam decreases, the power concen-
trates in a smaller area, and thus the maximum amplitude
increases. In fact, our simulations show that these two ef-
fects almost balance eachother, leading to relatively small
maximum amplitude changes, up to the point where the
beam reaches the center [Figs. 1(a) and 1(b)]. Close to
the focal point, the power of the first Airy ring is concen-
trated in a small area around r ¼ 0 and the maximum in-
tensity at the center rapidly increases. What is behind this
very abrupt increase in intensity is the lateral acceleration
of the Airy beams themselves. In this case, large trans-
verse velocities are attained and energy rushes in an ac-
celerated fashion toward the focus. This feature is unique
to this family of waves. While the peak intensity remains
around unity up to z ≈ 6, it then very rapidly increases by
more than 135 times at the focal point [Fig. 1(b)]. For long-
er propagation distances, the maximum intensity starts to
decrease. As can be seen in Fig. 1(b), this decrease is not
monotonic, but it exhibits oscillations, which are gener-
ated by the subsequent Airy rings.
In Fig. 1(c), the maximum intensity that the beam

reaches during propagation is shown as a function of
the initial radius r0 for α ¼ 0:05. For small values of r0,
the Airy beam does not carry much power and thus the
maximum intensity reached is also relatively small. As
the value of r0 increases, the maximum intensity also in-

creases and for r0 ≈ 15 it takes its maximum value
(Imax ≈ 156). For even larger values of r0, diffraction be-
comes significant and Imax starts to decrease. Note that,
as shown inFig. 1(c), large intensity contrasts are possible
for awide range of values of r0. Much higher values of Imax
are possible by further suppressing diffraction (decreas-
ing α). Figure 1(d) depicts the Hankel transform of the in-
put field profile of this beam as a function of the radial
spectral component k. The transform is a real function
of k that oscillates between positive and negative values
and its envelope is decreasing with k. Experimentally,
such Airy beams in the Fourier space might be implemen-
ted by using the amplitude and phase masks shown in
Fig. 1(d).

Particularly engineered superpositions of Airy func-
tions can exhibit enhanced properties as compared to ra-
dially symmetric Airy beams. Here we introduce the
transformationsx0ðr;r0;θ0Þ¼rcosðθ0Þþr0

ffiffiffi
2

p
=2,y0ðr; r0; θ0Þ

¼ −r sinðθ0Þ þ r0
ffiffiffi
2

p
=2, which are used to define the

following radially symmetric superposition of two-
dimensional Airy beams:

uðr; r0; zÞ ¼
Z2π

0

gðx0ðr; r0; θ0Þ; zÞgðy0ðr; r0; θ0Þ; zÞdθ0; ð5Þ

where gðx; zÞ is given byEq. (4). By setting r ¼ 0 in Eq. (5),
the amplitude profile is exactly computed at the center
uðr ¼ 0; r0; zÞ ¼ 2πg2ð ffiffiffi

2
p

r0=2; zÞ.Notice that the intensity
at the center is abruptly increasing as the fourth power of
an Airy function with a complex argument. In Fig. 2, dyna-
micalpropertiesof suchsolutionsaredepicted. Incompar-
ison with Fig. 1 we notice two main differences: (a) the
intensity contrasts achieved are larger [Fig. 2(c) versus
Fig. 1(c)] and (b) the maximum intensities of the subse-
quent oscillations are smaller [Fig. 2(b) versus Fig. 1(b)].
We note that these beams represent a continuous super-
position of Airy waves—in contrast to discrete sums re-
cently used in clearing colloidal suspensions [11].

Three-dimensional spherically symmetric abruptly
autofocusing waves are also possible in the region of

Fig. 1. Dynamics of radially symmetric Airy beams for
α ¼ 0:05, r0 ¼ 10, and Imaxðz ¼ 0Þ ¼ 1. (a) Detailed plot of the
central part of the propagation dynamics. (b) Maximum inten-
sity as a function of z. (c) Maximum intensity that the Airy beam
reaches during propagation for different values of the initial ra-
dius r0. (d) Hankel transform of the initial condition as given by
Eq. (3).

Fig. 2. Dynamics of the two-dimensional Airy superposition
given by Eq. (5) for α ¼ 0:05, r0 ¼ 10, and Imaxðz ¼ 0Þ ¼ 1.
(a), (b), (c) Same as in Fig. 1. (d) Amplitude of the solution.
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anomalous dispersion, provided that dispersion and
diffraction effects are equalized. The corresponding
normalized spatiotemporal equation reads

uz ¼ ði=2Þðuxx þ uyy þ uttÞ ¼ ði=2Þð2ur=r þ urrÞ; ð6Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ t2

p
. By applying the transformation

uðr; zÞ ¼ ϕðr; zÞ=r, the problem is reduced to the one-
dimensional diffraction equation iϕz þ ϕrr ¼ 0. Here
we focus on the following exact Airy-like solution of
the three-dimensional problem:

uðr; zÞ ¼ ½gðr0 − r; zÞ − gðr0 þ r; zÞ�=r; ð7Þ
where gðr; zÞ is given by Eq. (4). Note that the numerator
of Eq. (7) becomes zero for r ¼ 0. The first terms of the
expansion of Eq. (7) close to the origin are given by

uðr; zÞ ≈ −2gr0ðr0; zÞ − gr0r0r0ðr0; zÞðr2=3Þ; ð8Þ

where

uðr ¼ 0; zÞ ¼ −2gr0ðr0; zÞ ¼ −eiΨðr0;zÞ½ð2αþ izÞAiðξðr0; zÞÞ
þ 2Ai0ðξðr0; zÞÞ�; ð9Þ

gr0r0r0ðr0;zÞ ¼ ð1=2ÞeiΨðr0;zÞ½f 1ðr0;zÞAi0ðξðr0;zÞÞþ f 2ðr0;zÞ
Aiðξðr0;zÞÞ�, Ψðr;zÞ¼ð6α2z−6iαð2r−z2Þþ6rz−z3Þ=12,
ξðr; zÞ ¼ −z2=4þ iαzþ r, f 1ðr;zÞ¼2ð3α2þ4iαzþr−z2Þ,
and f 2ðr; zÞ ¼ 2α3 þ 9iα2zþ 6αðr − z2Þ þ 3irz − iz3 þ 2.
Equation (7) exhibits abruptly autofocusing dynamics

[see Fig. 3]. However, since the energy is initially spread
out on a three-dimensional ring, even higher intensity
contrasts are attained; the maximum intensity that the
Airy wave reaches during propagation is between 3
and 4 orders of magnitude larger than the original inten-
sity. Other scenarios where the third dimension might be
utilized include the use of two Airy pulses, the first one
decelerating and the second one accelerating so that the
waves simultaneously collide in space and time, or the
use of appropriately chirped pulses. Such approaches
are feasible even in the region of normal dispersion.

In conclusion, we have shown that families of two-
dimensional and three-dimensional waves can autofocus
in an abrupt fashion. We would like to point out that the
general concept of autofocusing presented here is more
general and, in principle, can be extended to other wave
functions beyond Airy. However, the curved nondiffract-
ing dynamics of Airy beams has several advantages,
including enhanced autofocusing contrast and abrupt-
ness, especially in the case of long focal lengths. Other
families of beams might also exist exhibiting abrupt auto-
focusing properties. In particular, we have investigated
different wave configurations, the results of which will
be presented elsewhere.
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Fig. 3. (Color online) (a) Isointensity hemisphere of the
Airy wave. (b), (c) Same as in Fig. 1 for the three-dimensional
Airy solution given by Eq. (7) for α ¼ 0:05, r0 ¼ 15, and
Imaxðz ¼ 0Þ ¼ 1.
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