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We introduce a new family of ð2þ 1ÞD light beams with pre-engineered abruptly autofocusing properties. These
beams have a circularly symmetric input profile that develops outward of a dark disk and oscillates radially as
a sublinear-chirp signal, creating a series of concentric intensity rings with gradually decreasing width. The light
rays involved in this process form a caustic surface of revolution that bends toward the beam axis at an acceleration
rate that is determined by the radial chirp itself. The collapse of the caustic on the axis leads to a large intensity
buildup right before the intended focus. This ray-optics interpretation provides valuable insight into the dynamics
of abruptly autofocusing waves. © 2011 Optical Society of America
OCIS codes: 050.1940, 260.2030, 350.5500.

Recently, a new class of light beams has been revealed
with abruptly autofocusing (AAF) properties [1]. As
opposed to self-focusing effects mediated by Kerr non-
linearities, this autofocusing behavior is purely linear
in origin and is a result of the optical field structure itself.
During propagation, these AAF fields can maintain a re-
latively low intensity profile while suddenly releasing all
their energy right before a target. The first AAF beam pro-
posed [1] exhibited a ð2þ 1ÞD circularly symmetric field
that involved the salient diffraction-resisting and self-
bending features of a finite-energy ð1þ 1ÞD Airy beam
[2,3]. As the Airy radial profile is accelerated toward
the center, a paraboloid caustic surface is formed that
“collapses” on axis—thus leading to a large intensity
buildup right before the intended focus. The intensity
contrast reached at the focus compared to the maximum
input intensity was shown to reach several orders of mag-
nitude. Moreover, due to the diffraction-free character of
ð1þ 1ÞD Airy beams, the maximum intensity of the wave
over the transverse plane remains almost constant along
the entire propagation path until the focus is reached. As
indicated in [1], AAF waves may prove advantageous in
medical laser treatments and in other nonlinear optical
settings over standard Gaussian beams obeying a more
gradual Lorentzian focusing law.
In this Letter, we report on a new family of AAF beams.

These are circularly symmetric waves whose input ampli-
tude develops outward of a dark disk and oscillates
radially as a sublinear chirp signal. During propagation,
these wavefronts form inward-bending caustic surfaces
of revolution with an acceleration that is directly related
to their chirp rate. We hereby extend the family of circu-
lar Airy beams [1], the rays of which are known to form
paraboloids as a result of the quadratic inward radial
shift of the Airy rings. This new flexibility comes at
the cost of losing the unique diffraction-resisting proper-
ties of the Airy waveform, which is, however, here traded
for greater transverse accelerations, enhanced focusing
abruptness, and larger intensity contrasts.
We begin with the scaled paraxial equation of light in

cylindrical coordinates ðr;φ; zÞ

2iuz þ urr þ r−1ur þ r−2uφφ ¼ 0; ð1Þ
where the radial distance r is normalized with respect to
an arbitrary transverse length x0 and the propagation dis-
tance z is normalized with kx20, k being the wavenumber.
The proposed beams are solutions of Eq. (1) with an
azimuth-independent initial condition

uðr; z ¼ 0Þ ¼ AðrÞ sin½qðrÞ�; ð2Þ
where A is an envelope function, such that the total con-
veyed power 2π

R
∞

0 juj2rdr is finite, and q is the phase of a
sublinear chirp signal

qðrÞ ¼
�
Cðr − r0Þβ; r ≥ r0
0; r < r0

; ð3Þ

where C > 0 and 1 < β < 2. The term sublinear stems
from the fact that the phase of a linear chirp is quadratic
(β ¼ 2). In what follows, we will see that the sublinearity
of the chirp rate is a prerequisite for the AAF phenome-
non. From Eq. (2), it is also obvious that, since uðr ≤

r0Þ ¼ 0 (a dark disk), only Aðr > r0Þ needs to be defined.
For any given input amplitude, the solution to Eq. (1) can
be written in terms of the Fresnel integral

uðr;φ; zÞ ¼
Z

2π

0

Z
∞

0

uðρ; θ; 0Þ
2πiz ei

ρ2þr2−2ρr cosðφ−θÞ
2z ρdρdθ: ð4Þ

Being in the paraxial regime, the wave dynamics can
be efficiently described by a ray-optics picture that
follows from a stationary phase computation of this inte-
gral. An application of this same concept to the ð1þ 1ÞD
Airy beam was done in [4], while a geometric optics per-
spective was also presented in [5]. Substituting uðρ; θ; 0Þ
from Eq. (2), with sinðqÞ ¼ ½expðiqÞ − expð−iqÞ�=2i, one
arrives at the conclusion that the wave in the region
r < r0 and near or above the caustic surface results from
the interference of the inward light rays that are due to
term expð−iqÞ only. These are expressed by the station-
ary phase conditions θ ¼ φ and q0ðρÞ ¼ ðρ − rÞ=z, where
q0ðρÞ≡ dq=dρ. Such a ray emerges from point ðρ; θÞ on the
input plane and propagates along the plane φ ¼ θ at an
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inward angle ψðρÞ ¼ tan−1ðq0Þwith the z axis (Fig. 1). The
continuum of rays emerging from points with a common
azimuth, i.e., ðρ; θÞ, ρ ≥ r0, form a caustic curve that is
parametrically expressed as ðr;φ; zÞ ¼ ðρ − q0=q00; θ;
1=q00Þ, where ρ ≥ r0 is the parameter. The continuum of
these caustics for 0 ≤ θ < 2π forms a caustic surface of
revolution, which may be conveniently expressed as

r ¼ r0 −
½Cβðβ − 1Þz�ν

ν − 1
; ð5Þ

where ν ¼ ð2 − βÞ−1. It turns out that the chirp parameter
β determines the order ν of the caustic, and also that the
condition 1 < β < 2 (sublinear chirp) ensures ν > 1, i.e.,
that the caustic is bent with acceleration toward the axis.
For example, if C ¼ 2=3 and β ¼ 3=2, one obtains the
caustic ðr0 − z2=4; zÞ, whose generating curve is the same
as the familiar parabolic trajectory of ð1þ 1ÞD Airy
beams ðx ¼ z2=4Þ. Indeed, by recalling the asymptotic ex-
pression Aið−xÞ ∼ sin½ð2=3Þx3=2 þ π=4�= ffiffiffiπp

x1=4, one sees
that the circular Airy beam of [1] can be approximately
considered as a beam of the family of Eq. (2) with the
above chirp parameters.
Through the ray-optics approach, one also finds that

the wave at an arbitrary point ðr;φ; zÞ in the considered
region results from the interference of two rays emerging
from points ðρ1;2;φ; 0Þ, where ρ1;2 are the two solutions of
q0 ¼ ðρ − rÞ=z. For points lying on the caustic surface,
Eq. (5), the two first-order stationary points collapse
to a second-order one [6]. The maximum amplitude gra-
dient occurs at (r ¼ 0, zc) where the caustic surface
meets the axis, and zc is obtained from Eq. (5) for
r ¼ 0. The wave at this point is due to the constructive
interference of the continuum of rays emerging from the
circle ðρc;φ; 0Þ, 0 ≤ φ < 2π, where ρc ¼ νr0. Using a
second-order stationary phase method [6], it can be
shown that the wave amplitude at this point is

uðr ¼ 0; zcÞ≃
πρcAðρcÞAið0Þ
zc½−q000ðρcÞ=2�1=3

ei½ρ2c=2zc−qðρcÞ�: ð6Þ

The latter is also valid approximately for on-axis points
ð0; zÞ in the neighborhood of ð0; zcÞ, however, with
Aið0Þ replaced by Aið−σÞ where σ ≈ σ0ðzcÞðz − zcÞ and
σ0ðzcÞ ¼ ρcz−2c ½−q000ðρcÞ=2�−1=3. Recalling the shape of the
Airy function, we deduce that ð0; zcÞ is a point of maxi-

mum amplitude gradient (Ai00ð0Þ ¼ 0) and that the focal
point ð0; zf Þ occurs approximately when σ ≈ 1, hence

zf ≈ zc þ
1

σ0ðzcÞ
¼ ½ðν − 1Þr0�1=ν

Cβðβ − 1Þ þ 1
σ0ðzcÞ

: ð7Þ

The factor AðρcÞ in Eq. (6) implies that the wave am-
plitude near the focus is determined mainly by the values
of the input wavefront on the circle ρ ¼ ρc, chirp para-
meters C, β being fixed. This is an important general con-
clusion for engineering AAF waves: The larger the
acceleration (or the order ν) of the caustic surface, the
greater has to be the radial extent (at least νr0) of the in-
put wavefront in order to sustain the abrupt focusing.
Equation (6) also reveals the dependence of focusing
on q000.

Let us now examine a few examples pertaining to some
of the properties of these beams. The evolution of the
waves is numerically computed using the Hankel trans-
form method [1]. In our numerical investigations, the
parameter C is scaled out by setting C ¼ π, which is
equivalent to the second zero of the input profile occur-
ring at the radius r ¼ r0 þ 1. The input radial profile of a
beam with β ¼ 3=2 and exponential envelope AðrÞ ¼
exp½aðr0 − rÞ� is shown in Fig. 2(a) when a ¼ 0:2 and
r0 ¼ 4, while Fig. 2(b) shows the evolution of its intensity
in space. As predicted by the analysis, a paraboloid caus-
tic is formed that collapses on the axis at zc ≈ 0:85 where
the amplitude gradient is maximum. The focus occurs
right after, at zf ≈ 0:881, which agrees well with the
value 0.887 predicted by Eq. (7). Figure 2(c) shows the
maximum intensity versus the propagation distance with
normalized Imaxð0Þ ¼ 1, clearly verifying the AAF phe-
nomenon that starts at z ≈ 0:79 with a contrast ∼7 to
exceed 300 on focus. The analytically predicted contrast
is remarkably close: 295. The abruptness of the focusing
can be appreciated by assuming the ImaxðzÞ curve of a
Gaussian beam that achieves the same contrast I0
at the same focal distance zf , i.e., ImaxðzÞ ¼ I0½1þ
ðI0 − 1Þðz=zf − 1Þ2�−1. The Lorentzian curve focuses much
more slowly.

We now assume a beam with faster input oscillations,
so that β ¼ 5=3, and the same exponential amplitude,
hence having approximately the same total power as
the beam of Fig. 1. The AAF phenomenon of this beam
is illustrated in Fig. 3. The formed caustic is now of cubic

Fig. 2. (Color online) (a) Radial input amplitude, (b) intensity
evolution (in logarithimic scale), and (c) intensity contrast
versus propagation distance for a beam with C ¼ π, β ¼ 3=2,
r0 ¼ 4, and AðrÞ ¼ exp½0:2ð4 − rÞ�. The red detail in (b) is the
paraboloid caustic of Eq. (5).

Fig. 1. (Color online) Ray-optics schematic: The rays emerg-
ing from the circle with radius ρc meet on axis at z ¼ zc, exactly
where the caustic surface collapses.
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order (ν ¼ 3), hence the focus occurs at a shorter dis-
tance zf ≈ 0:581, which agrees well with the value 0.582
predicted by Eq. (7). As seen from Fig. 2(c), the focusing
is now more abrupt, with an intensity that starts increas-
ing from around 11 at z ≈ 0:557 to above 530 at the focus.
The predicted value is 520.
The enhanced abruptness and contrast of AAF in a

beam with higher β comes at the cost of increased sen-
sitivity of this contrast to the radius r0 of the input dark
disk. This is shown in Fig. 4, where Imax is given versus r0
for the two considered beams. Although it reaches higher
values, the peak contrast of the beam with the faster
chirp-rate drops (and increases) faster with r0. This
can be intuitively explained through Eq. (6): The rays that
interfere to produce the wave around the focal region
stem from input circumferences with radii around
ρc ¼ νr0. Therefore, with a given AðrÞ, a higher ν implies
weaker rays and a contrast that drops faster with r0.
Equation (6) also accounts for the values of Imax, since
a higher ν implies a higher ρc, and lower zc, q000. Higher
intensity contrasts are also obtained with lower apodiza-
tion rates a, i.e., slower decreasing envelope functions.
In addition to the chirp-rate, the envelope of the input

amplitude can also be engineered to produce various
AAF beams. For example, since the rays responsible for
the formation of the caustic surface and the focal spot
originate from an input annulus r0 ≤ r ≤ ρmax, where
ρmax > ρc, one can define AðrÞ to be nonzero only within

this annulus. In this way, one obtains higher intensity
contrasts because the interfering rays are of equal initial
amplitude, as well as suppressed secondary on-axis max-
ima. Figure 5 shows the dynamics of such a beam with
β ¼ 5=3, C ¼ π, r0 ¼ 4, and ρmax ¼ r0 þ 803=5, the latter
value being selected to allow exactly 40 oscillations
of the input radial profile, as shown in Fig. 5(a). In
Fig. 5(c), the intensity contrast now reaches 12000 on-
focus and the second maximum is ∼8 dB lower, which
should be compared to approximately 3:2dB of Fig. 3(c).

The key concept behind the introduced beams, viz. the
radial chirp of the input amplitude, can be utilized to
design an endless variety of AAF beams. For example,
the basic definition of Eq. (2) can be expanded to beams
with a cos q or expð−iqÞ input profile. One could also
assume linear superpositions of beams with different
parameters β and/or r0 that are selected so that their
caustic surfaces collapse at the same on-axis point.

In conclusion, we have significantly expanded the re-
cently introduced family of AAF waves. By virtue of the
chirped radial oscillations of their input amplitude, the
new members can abruptly focus their power after writ-
ing caustic surfaces of revolution of any desired order.
There are 2 degrees of freedom in pre-engineering the
AAF process: the radial chirp rate, which determines
the shape of the caustic, and the envelope profile, which
can be designed to increase the contrast and tailor the
shape of the focusing spot. Beams with higher chirp rates
are in general appropriate for enhanced abruptness and
greater intensity contrasts, however, at shorter focal
distances.
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Fig. 3. (Color online) Similar to Fig. 2 but with β ¼ 5=3.

Fig. 4. (Color online) Maximum intensity contrast versus r0
for the beams of Fig. 2 (solid blue curve) and Fig. 3 (dashed
red curve).

Fig. 5. (Color online) Similar to Fig. 3 with an envelope
function AðrÞ ¼ 1 for 4 ≤ r ≤ 4þ 803=5 and zero elsewhere.
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