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We investigate the linear propagation of Gaussian-apodized solutions to the paraxial wave equation in free-space
and first-order optical systems. In particular, we present complex coordinate transformations that yield a very
general and efficient method to apply a Gaussian apodization (possibly with initial phase curvature) to a solution
of the paraxial wave equation. Moreover, we show how this method can be extended from free space to describe
propagation behavior through nonimaging first-order optical systems by combining our coordinate transform ap-
proach with ray transfer matrix methods. Our framework includes several classes of interesting beams that are
important in applications as special cases. Among these are, for example, the Bessel–Gauss and the Airy–Gauss
beams, which are of strong interest to researchers and practitioners in various fields. © 2012 Optical Society of
America
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1. INTRODUCTION
In this paper we investigate the linear propagation of
Gaussian-apodized solutions to the paraxial wave equation
in free-space and first-order optical systems. In particular, we
present complex coordinate transformations that yield a very
general and efficient method to apply a Gaussian apodization
to a solution of the paraxial wave equation. Moreover, we
show how this method can be extended from free space to
propagation through nonimaging first-order optical systems
by combining our coordinate transform approach with the
ABCD matrix analysis framework. The paper is organized as
follows. In the introduction we summarize briefly the differ-
ential formulation of diffraction theory and outline our main
results and the principal ideas for their derivation. We also put
the current work in context with previous studies. In Section 2
we develop a framework that accounts for the diffraction or
anomalous dispersion effects arising from a Gaussian apodi-
zation applied to a solution of the paraxial wave equation via a
set of complex coordinate transforms. We state a rigorous re-
sult on the connection of the apodized and nonapodized solu-
tions through these coordinate transforms. Furthermore, we
show examples of the effectiveness of our method for some
important types of beams. In Section 3 we extend the previous
results to a very general class of first-order optical systems.
Using a minimal optical decomposition of the ray transfer ma-
trix, we reduce the problem to the propagation through thin
lenses and free space only. These simplified systems can then

be analyzed using our coordinate transforms and the ABCD
laws from ray transfer matrix analysis. We end in Section 4
with a summary and discussion of our results.

A. Nondiffracting Solutions of the Paraxial Wave
Equation
A commonly used model for the propagation of paraxial
waves in a linear isotropic medium is the paraxial wave equa-
tion of the form

i
∂u
∂z

� 1
2k

∇2
xu � 0; (1)

with k � ω
c , which is a differential formulation of diffraction

theory equivalent to the approach via diffraction integrals;
see for example [1,2]. Here we denote by �x; z� �
�x1;…; xd; z� the coordinates of a Cartesian coordinate system
in Rd�1. Furthermore, we use the shorthand notation

∇2
x �

Xd
j�1

∂2

∂x2j
(2)

for the transverse Laplacian. Aside from optics partial differ-
ential equations (PDEs) of the same type as Eq. (1) arise for
example in quantum mechanics [3], electromagnetics [4], and
acoustics [5] and are often times referred to as paraxial (wave
or Helmholtz) equation or linear Schrödinger equation. As
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mentioned above, equations of the form Eq. (1) are used for
example in optics to study diffraction effects during beam pro-
pagation [1,2]. Furthermore, Eq. (1) admits some interesting
analytical solutions like the Gaussian beam [6] and Hermite–
Gauss and Laguerre–Gauss beams [7–9]. Of particular interest
for various applications are also the so-called nondiffracting
solutions. The most prominent examples of this class of
beams are at the moment probably Bessel [10,11] and Airy
beams [3]. However, these theoretical solutions are not al-
ways physically realizable in a laboratory. For example, it
is well known that a Bessel beam can be viewed as a conical
superposition of plane waves [10,12],

Z
2π

0
exp�iα�x cos θ� y sin θ�� exp�inθ�dθ exp

�
−α2z
2k

�

� 2πinJn�αr� exp�inϕ� exp
�
−α2z
2k

�
;

and as such carries infinite energy; see also Fig. 1. In the pre-
vious equation we denote by (x, y, z) and (r, ϕ, z) Cartesian
and cylindrical coordinates of R3, respectively. Since physi-
cally realizable waves need to have finite energy, a common
method to apodize a theoretical wave with infinite energy is
the use of a Gaussian apodization; see, for example, [13].
Mathematically, such an apodization can be introduced by
multiplying an initial condition (possibly with infinite energy)
with a Gaussian bell-shaped function. Thus, the resulting apo-
dized initial condition is ensured to have finite energy. Physi-
cally, a Gaussian apodization arises frequently in optics when
a laser beam with a Gaussian intensity profile is used. In the
case of Bessel beams, the introduction of a Gaussian apodiza-
tion leads to finite energy analogs usually referred to as
Bessel–Gauss beams [14], and, similarly, for Airy beams
one may define corresponding Airy–Gauss beams [15]. As an
example, Fig. 1 illustrates the generation of a zeroth-order
Bessel–Gauss beam with an axicon lens; see for example
[12,16].We return to these important examples when we dis-
cuss possible applications of our methods in Sections 2 and 3.

In this paper we will introduce a general framework
that provides an efficient method to apply a Gaussian
apodization—possibly with initial phase curvature—to any so-
lution of Eq. (1) that admits an analytic continuation. In free

space, this can be accomplished through a set of complex co-
ordinate transforms that account for the diffraction effects re-
sulting from the apodization. A previous attempt to derive
closed-form expression for Gaussian-apodized beams is the
study of Helmholtz–Gauss waves by Gutiérrez-Vega and
Bandres [13]. In the aforementioned paper, the authors derive
an analytic expression for Gaussian-apodized nondiffracting
solutions to the Helmholtz equation as a product of the com-
plex amplitude of a Gaussian beam, and a scaled transverse
profile. Our approach in the present paper differs in important
aspects from the discussion in [13] and generalizes the ap-
proach significantly. First, we assume a paraxial approxima-
tion and thus consider the paraxial wave equation instead of
the Helmholtz equation. Second, we allow the Gaussian apo-
dization in the initial conditions to have nonzero phase curva-
ture; i.e., the real part of the complex beam parameter (CBP)
does not vanish. Third, we state our main result for arbitrary
transverse dimensions; this allows us to treat the practically
important cases of one (spatial or temporal), two (spatial),
and even three (e.g., two spatial and one temporal) transverse
dimensions. The last case is particularly important in situa-
tions where diffractive and dispersive effects need to be
accounted for; see for example [17] for a discussion of non-
diffracting, nondispersive optical light bullets in anomalously
dispersive media and their apodized analogs. Fourth, we pre-
sent a complete derivation and rigorous statement of the
transforms and the implications for the solutions of an impor-
tant class of initial value problems (IVPs) for Eq. (1).
Moreover, aside from the significant improvements and gen-
eralizations mentioned above, we generalize our coordinate
transform method from free-space to nonimaging paraxial op-
tical systems by combining our coordinate transforms with
the ABCD laws for ray transfer matrices; see for example
[6,18]. Recently, several authors have derived analytical ex-
pressions for special classes of beams propagating through
first-order (or ABCD) systems; see [15,19–21]. Usually, the
starting point of the derivation is the Collins diffraction inte-
gral (see [22,23]), and one proceeds by explicitly integrating
the resulting expression. Another interesting approach based
on the fact that a Bessel–Gauss beam is a conical superposi-
tion of Gauss beams is presented in [24]. In this paper we will
provide a more general framework that does not require the
explicit evaluation of the diffraction integral but instead com-
bines the ray transfer matrix approach with the complex co-
ordinate transforms for free space based on a minimal optical
decomposition (see [25]) of the ray transfer matrix of the para-
xial system. Furthermore, the method we develop in this pa-
per is not restricted to real ABCD matrices but can even be
applied to matrices with complex elements describing optical
systems with spatially inhomogeneous loss or gain. Our meth-
od is, however restricted to aligned optical systems.

B. Gaussian Apodizations in Free-Space and Complex
Coordinate Transforms
We start our investigation by considering the Gaussian solu-
tions to Eq. (1) of the form

G�x; z� � 1

�1� z ∕ q0�d ∕ 2
exp

�
ikx2

2q�z�

�
: (3)

The evolution of a radially symmetric Gaussian profile is illu-
strated in Fig. 2. We assume in Eq. (3) and throughout this

Fig. 1. Creating a conical wave with an axicon lens. The incoming
beam on the left is refracted, and the wave vectors after refraction
all lie on the surface of a cone. In the diamond-shaped Bessel region
behind the axicon, the refracted waves form a conical superposition.
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paper that q0 ∈ C and denote by q�z� � q0 � z the CBP in free
space. We describe Gaussian beams and Gaussian apodiza-
tions throughout this paper by the CBP �q�z� � q0 � z� since
this formulation is very efficient in the ABCD matrix frame-
work. To be reasonably self-contained, we recall here briefly
the concept of the CBP in connection to the real spot width
and the phase curvature. For a more detailed discussion, we
refer for example to Milonni and Eberly [6], Chapter 7. The
CBP can be defined by

1
q�z� �

1
R�z� � i

2

kw2�z� ;

where R is the radius of curvature of the phase and w the spot
width; see Fig. 3. In this paper we show that, given an analytic
continuation U of a solution u of Eq. (1), we obtain a solution
corresponding to the apodized initial conditions by the pro-
duct ansatz

v�x; z� � G�x; z�U�~x; ~z�; (4)

where, by assumption, U�~x; ~z� is a solution of the paraxial
equation

i
∂U
∂~z

� 1
2k

∇2
~xU � 0 (5)

in the transformed coordinates

~xj�xj; z� �
xj

1� z ∕ q0
; j � 1; 2;…; d; ~z�z� � z

1� z ∕ q0
:

(6)

In the present paper we derive the above formulas for the co-
ordinate transformation Eqs. (6). Moreover, we can choose
the transforms in Eq. (6) such that, if U�x; z� is the analytic
continuation of a solution u of Eq. (1) with initial conditions
u0�x�, then v�x; z� � G�x; z�U�~x; ~z� is a solution of Eq. (1) with
initial conditions G�x; 0�u0�x�.

C. Propagation in First-Order Optical Systems
Following our discussion in free space, we expand our inves-
tigation to the Collins diffraction integral (see [22,23]) and the
description of first-order optical systems via ray transfer or
ABCD matrices (see Fig. 4). In particular, we are interested
in finding an analytical expression for the output of a nonima-
ging first-order optical system in terms of the components of
the ray transfer matrix if the input is given by a Gaussian-
apodized solution of the paraxial wave equation. For nonima-
ging first-order optical systems, which by definition satisfy the
condition B ≠ 0, we exploit the fact that the diffraction integral
and the corresponding ray transfer matrix of the optical sys-
tem can be decomposed into expressions corresponding to a
minimal optical decomposition (see Reference [25]) consist-
ing of a thin lens, free space, and another thin lens (see Fig. 5).
Combining our coordinate transforms with the ABCD laws,
we derive an analytical expression for the solution of the
integral equation

v�x; zout� �
�

k
i2πB

�
d ∕ 2
ZZ

∞

−∞

v�x0; zin�

× exp
�
ik
2B

�Ax02 − 2x0 · x� Dx2�
�
dx01dx

0
2

of diffraction theory, which is often referred to as Collins
formula. More precisely, we show in Section 3, Theorem 2

Fig. 2. Evolution of the absolute value of the complex amplitude of a
Gaussian profile during propagation in free space. Here we denote
r �

�����������������
x2 � y2

p
. The numerical values used for this simulation are

k � 0.5, w0 � 10.0, and R�0� � 0.0.

Fig. 3. Illustration of the evolution of spot width and radius of cur-
vature of a Gaussian beam during propagation. Here w0 � w�0� is
called the beam waist. The CBP q�z� is defined in terms of the real
spot width and radius of curvature by 1

q�z� � 1
R�z� � i 2

kw2�z�. The numer-
ical values used for this illustration are k � 0.5, w0 � 10.0, and
R�0� � 0.0.

Fig. 4. A first-order optical system can be described by a single
ABCD matrix by multiplying the ABCD matrices of the individual
components.
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that a solution to the above integral equation with input in the
transverse z � 0 plane

v�x; 0� � u�x; 0� exp
�
ikx2

2qin

�
;

where u�x; z� is again a solution of the paraxial equation, can
be expressed analytically using our complex coordinate trans-
forms. In particular, the output in the z � zout plane is given by

v�x; zout� �
1�

A� B
qin

�
d ∕ 2 exp

�
ikx2

2qout

�
u
�

x
A� B ∕ qin

;
B

A� B ∕ qin

�
;

where the CBP is given by

1
qout

� Cqin � D
Aqin � B

:

One noteworthy advantage of this method is the fact that it
does not require the diffraction integral to be solved explicitly.

2. GAUSSIAN APODIZATION VIA COMPLEX
COORDINATES IN FREE SPACE
In this section we derive a set of complex coordinate trans-
forms that provide an elegant method to apply a Gaussian apo-
dization to any solution of the paraxial wave equation Eq. (1)
that has an analytic continuation, thus making the apodized
solution a solution to the wave equation as well. We start with
the derivation followed by a rigorous statement of the main
results and some important examples to demonstrate the
effectiveness and efficiency of our approach.

A. Derivation of Coordinate Transformations
Assume that we are given a solution v�x; z� � G�x; z�U�~x; ~z� as
in Eq. (4) of the paraxial equation Eq. (1) where G is again the
Gaussian solution defined in Eq. (3). Then inserting the pro-
duct ansatz for v into the paraxial equation yields the follow-
ing PDE for U :

i
∂U
∂z

�~x; ~z� � 1
2k

∇2
xU�~x; ~z� � i

q�z� hx;∇xU�~x; ~z�i � 0: (7)

Here h·; ·i denotes the usual scalar product of Euclidean space.
Carrying out the differentiation in Eq. (7), we obtain from the
chain rule that U� ~x�x; z�; ~z�x; z�� satisfies the equation

0 � i
∂U
∂~z

∂~z
∂z

�
X2
k�1

∂2U
∂ ~x2k

�X2
j�1

�
∂ ~xk
∂xj

�
2
�

� ∂U
∂~z

�X2
j�1

∂2 ~z
∂x2j

� ixj
q�z�

∂~z
∂xj

�
�
X2
k�1

∂2U
∂~z∂ ~xk

∂ ~xk
∂xj

∂~z
∂xj

�
X2
l�1

X2
l�1
k≠1

∂2U
∂ ~xk∂ ~xl

�X2
j�1

∂ ~xk
∂xj

∂ ~xl
∂xj

�

�
X2
k�1

∂U
∂ ~xk

�
i
∂ ~xk
∂z

�
X2
j�1

�
∂2 ~xk
∂x2j

� ixj
q�z�

∂ ~xk
∂xj

��
: (8)

We observe that the first line of Eq. (8) takes the form of a
paraxial equation provided that

∂~z
∂z

�
X2
j�1

�
∂ ~xk
∂xj

�
2
; k � 1; 2: (9)

Furthermore, using Eq. (8), we may impose additional con-
straints on the coordinate Eqs. (6). In particular, we may as-
sume that the transformation of the propagation coordinate ~z
is independent of the original transverse coordinates x1, x2.
Moreover, we observe that we may choose the transforma-
tions of the transverse coordinates to depend only on one
of the original transverse coordinates each. Therefore, we
impose that ∂~z

∂xj
≡ 0 for j � 1, 2 and ∂ ~xl

∂xj
≡ 0 for j ≠ l. Thus,

we may put

∂~z
∂z

�
�
∂ ~xj
∂xj

�
2

� g2�z�; j � 1; 2 (10)

for some function g of z. Observe that, once we determine g,
we have also found

~xj � g�z�xj � cj�z�; j � 1; 2 (11)

for some functions ck�z� and

~z�z� �
Z

g2�z�dz: (12)

Combining Eq. (11) and the last line on the right-hand side of
Eq. (8), we obtain

i
dg�z�
dz

xj �
dcj�z�
dz

� ixj
q�z� g�z� � 0; j � 1; 2: (13)

Suppose for now that dcj�z�
dz ≡ 0, j � 1, 2. Then for xj ≠ 0, we

conclude from Eq. (13) that

dg�z�
dz

� −
1

q0 � z
g�z�; (14)

where we used the fact that, in free space, the CBP of a
Gaussian beam is given by q�z� � q0 � z. Solving Eq. (14)
for g�0� � 1, we find the coordinate transforms

Fig. 5. Propagation through a canonical first-order optical system
(ABCD system) consisting of a thin lens L1 with focal length f 1,
free-space propagation over a distance B ≠ 0, and a second thin lens
L2 with focal length f 2. The B component in the ray transfer matrix
corresponds to an effective propagation distance in free space, while
the focal distances of the thin lenses are given by 1

f 1
� 1−A

B and 1
f 2
� 1−D

B ,
respectively.
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~xj�xj; z� �
xj

1� z ∕ q0
� cj; j � 1; 2;

~z�z� � −
q02

�q0 � z�2 � c3:

Note that these coordinates are also well defined in the case
that xj � 0, which was at first excluded in the derivation.
Moreover, if we impose the constraints ~x�x; 0� � x and
~z�x; 0� � 0, we obtain the coordinate transforms

~xj�xj; z� �
xj

1� z ∕ q0
; j � 1; 2; ~z�z� � z

1� z ∕ q0
:

Note that, although we restricted the derivation above to
the practically important case of two transverse dimensions
(d � 2), the same arguments still hold in the more general
case (d ≥ 2), and we obtain the coordinate transforms already
stated in Eq. (6).

B. Main Result in Free Space
The previous observations can be summarized in the follow-
ing statement.

Theorem 1. Let u:Rd × R → C be the solution of the IVP

�
−i ∂u�x;z�

∂z � 1
2k∇

2
xu�x; z�;

u�x; 0� � u0�x�:

Define for j � 1; 2;…; d the coordinate transforms

~xj �
xj

1� z ∕ q0
; ~z�z� � z

1� z ∕ q0
; (15)

and for q0 ∈ C, q�z� � q0 � z denote by

G�x; z� � 1
�1� z ∕ q0�d ∕ 2

exp
�
ikx2

2q�z�

�

the solution to the IVP

8<
:
−i ∂G�x;z�

∂z � 1
2k∇

2
xG�x; z�;

G�x; 0� � exp
�
ikx2
2q0

�
:

Then the solution of the IVP

8<
:

−i ∂v�x;z�
∂z � 1

2k∇
2
xv�x; z�;

v�x; 0� � exp
�
ikx2
2q0

�
u0�x�

is given by

v�x; z� � G�x; z�U�~x�x; z�; ~z�x; z��;

where U∶Cd × C → C is the analytic continuation of u via the
complex coordinates ~x, ~z.

As we can see from Theorem 1, the product structure in the
initial conditions is preserved during propagation. For a given
paraxial beam, the application of a Gaussian apodization to

the initial conditions results in a solution that is the product
of the familiar Gaussian solution and the nonapodized beam
with complex arguments given by the coordinate transforms.
We emphasize here that, in this paper, we allow a more gen-
eral class of Gaussian apodizations than the methods em-
ployed by Gutiérrez-Vega and Bandres in [13] and Mills
et al. in [17], where the CBP of the initial Gaussian apodization
is purely imaginary. This latter situation is contained as a spe-
cial case in our more general setup. The fact that we have
accounted for the possibility of a phase curvature in the
Gaussian factor is crucial for the extension of the methods of
Theorem 1 from free-space to more general first-order optical
systems.

C. Examples
In this section, we show the effectiveness of our method by
deriving analytical expressions for Bessel–Gauss beams
[10,14]. Furthermore, we discuss classes of Hermite–Gauss
and Laguerre–Gauss beams with complex arguments that
arise naturally from the complex coordinate transforms in
Theorem 1.

1. Bessel and Bessel–Gauss Beams
For n � 0; 1; 2;…, a solution of Eq. (1) with initial conditions

u�x; y; 0� � 2πinJn

�
α

�����������������
x2 � y2

q �
exp�inθ�

�
Z

2π

0
exp�inϕ� exp�iα�x cos�ϕ� � y sin�ϕ���dϕ

is given by the Bessel beam

Fig. 6. Evolution of the absolute value of the complex amplitude
(jAj) of a Bessel–Gauss beam profile during propagation in free space.
The propagation characteristics due to dispersion are described by
the change of the CBP of the Gaussian factor (broadening of the
Gaussian beam width) as well as the complex coordinate transforms
(modulation of the Bessel profile). Here we denote r �

�����������������
x2 � y2

p
. The

numerical values used for this simulation are α � 0.5, k � 0.5,
w0 � 10.0, and R�0� � 0.0.
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u�x; y; z� � 2πinJn

�
α

�����������������
x2 � y2

q �
exp�inθ� exp�−iα2z ∕ �2k��

�
Z

2π

0
exp�inϕ� exp�iα�x cos�ϕ� � y sin�ϕ���dϕ

× exp�−iα2z ∕ �2k��; (16)

where θ � tan−1�y ∕ x� denotes the azimuthal angle in cylinder
coordinates and Jn is the nth-order Bessel function of the first
kind. Thus, a Bessel–Gauss beam corresponding to the initial
conditions

u�x; y; 0� � 2πin exp�ik�x2 � y2� ∕ �2q0��Jn

×
�
α

�����������������
x2 � y2

q �
exp�inθ�

is given, according to Theorem 1, by

u�x; y; z� � 2πin
1

1� z ∕ q0
exp

�
ik�x2 � y2�

2q�z�

�
Jn

�
α

�����������������
x2 � y2

p
1� z ∕ q0

�

× exp�inθ� exp
�

−iα2z
2k�1� z ∕ q0�

�
; (17)

where q�z� � q0 � z denotes the CBP in free space. Figure 6
illustrates the evolution of a Bessel–Gauss beam during pro-
pagation. We observe that the evolution due to dispersion is
characterized by a broadening of the profile described by the
change of the CBP of the Gaussian factor as well as a mod-
ulation of the Bessel profile due to the complex coordinates.

2. Hermite–Gauss and Laguerre–Gauss Beams with
Complex Arguments
In his 1973 paper [7], Siegman introduced a new class of
Hermite–Gauss solutions to a paraxial equation of the type
Eq. (1). In contrast to the previously considered Hermite–
Gauss solutions, these new solutions had the same complex
arguments in the Hermite polynomials as in the Gaussian. This
idea has been extended to Laguerre–Gauss beams as well and
has been studied since by several authors—for example in
connection with complex sources [26], perturbation expan-
sions [27,28], and Lie groups and hidden symmetries [8].
We show that our framework applied to the Hermite–Gauss
and Laguerre–Gauss solutions with real arguments naturally
introduces complex arguments in the Hermite polynomials.
Although the form of the coordinate transforms is naturally
related to the CBP of the Gaussian beam, it appears as if these

apodized versions of Hermite–Gauss and Laguerre–Gauss
have not been observed in the literature before.

We start with a Hermite–Gauss solution of the normalized
paraxial wave equation

i
∂u�x; y; z�

∂z
�
�
∂2

∂x2
� ∂2

∂y2

�
u�x; y; z� � 0;

which is given—according to Wünsche [8], Eq. (3.3)—as
follows:

U�x;y;z�� w1w2

�w2
1�4iz�1 ∕ 2�w2

2�4iz�1 ∕ 2

×exp
�
−

x2

w2
1�4iz

−
y2

w2
2�4iz

�

×im
�
α1−4iz
w2

1�4iz

�
m ∕ 2

Hm

�
x
�

α1�w2
1

�α1−4iz��w2
1�4iz�

�1 ∕ 2�

×in
�
α2−4iz
w2

2�4iz

�
n ∕ 2

Hn

�
y
�

α2�w2
2

�α2−4iz��w2
2�4iz�

�1 ∕ 2�
:

(18)

In the above, αj , wj are positive real numbers for j � 1, 2.
Furthermore, m and n are positive integers, and Hm denotes
the mth Hermite polynomial. Note that, in the case α1 � w2

1,
α2 � w2

2, we recover the Hermite–Gauss solutions with real
arguments. It is a direct consequence of Theorem 1 that, with
k � 1 ∕ 2 and 1 ∕ q�0� � 4i ∕w2

0, we obtain a new solution:

v�x; y; z� � w2
0

w2
0 � 4iz

exp
�
−

x2 � y2

w2
0 � 4iz

�
w1w2

�w2
1 � 4iz�1 ∕ 2�w2

2 � 4iz�1 ∕ 2 exp
�
−

x2

w2
1 � 4iz

−
y2

w2
2 � 4iz

�

× im
�
w2

1w
2
0 � 4iz�w2

1 −w2
0�

w2
1w

2
0 � 4iz�w2

1 �w2
0�

�m ∕ 2

Hm

�
w2

0x

w2
0 � 4iz

� �α1 �w2
1��w2

0 � 4iz�2
�α21w2

0 � 4iz�α21 −w2
0���w2

1w
2
0 � 4iz�w2

1 �w2
0��

�1 ∕ 2�

× in
�
w2

2w
2
0 � 4iz�w2

2 −w2
0�

w2
2w

2
0 � 4iz�w2

2 �w2
0�

�n ∕ 2

Hn

�
w2

0y

w2
0 � 4iz

� �α1 �w2
2��w2

0 � 4iz�2
�α22w2

0 � 4iz�α22 −w2
0���w2

2w
2
0 � 4iz�w2

2 �w2
0��

�1 ∕ 2�
: (19)

In the case w0 � w1 � w2, we can collect the first three lines
of Eq. (19) into one Gaussian exponential:

w4
0

�w2
0 � 4iz�2 exp

�
−
2�x2 � y2�
w2

0 � 4iz

�
:

But even in the general case, the expression in Eq. (19) can be
viewed as a new class of Hermite–Gauss beams. To the best of
our knowledge, these solutions form a new class of Hermite–
Gauss beams that has not been observed in the literature
before.

Similarly to the Hermite–Gauss case, the framework pre-
sented above also yields new classes of Laguerre–Gauss solu-
tions if applied to the well-known Laguerre–Gauss solution
with real (or possibly complex) arguments that have been
studied, for example, in [8,9].
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3. PROPAGATION IN NONIMAGING
FIRST-ORDER OPTICAL SYSTEMS
In this section we extend our coordinate transform approach
from free-space to more general first-order optical systems
using some insights from the analysis of ray transfer matrices.
More specifically, the main idea consists of factorizing the ray
transfer matrix of a general nonimaging system into a minimal
optical decomposition (see [25,29]) consisting of two thin
lenses and free-space propagation. We can then propagate
any Gaussian-apodized solution to the paraxial equation
through the system by using our complex coordinate trans-
forms for the free-space section and the well-known ABCD
laws, e.g., [2,6,18], for the passages through the thin lenses.
In this section, unless stated otherwise, we focus on the prac-
tically important cases of one and two transverse dimen-
sions d � 1,2.

A. Collins Diffraction Integral and Minimal Optical
Decompositions
We start by briefly discussing heuristically an observation that
motivates the decomposition of the ray transfer matrix into a
product corresponding to thin lenses and free-space propaga-
tion. Recall that the complex field amplitude Aout of an
electric field immediately after passing through a thin lens
in terms of the focal length f and the complex field amplitude
immediately before the lens Ain is given (see for example
[30–32]) by

Aout�x� � Ain�x� exp
�
−ik

x2

2f

�
:

The propagation of a paraxial wave through a first-order sys-
tem (rotationally symmetric if d � 2) can be described by a
diffraction integral (see [22,23]) where the field u�x; z� at
the output plane z � zout is given in terms of the field at
the input plane z � zin by

u�x; zout� �
�

k
i2πB

�
d ∕ 2
ZZ

∞

−∞

u�x0; zin�

× exp
�
ik
2B

�Ax02 − 2x0 · x� Dx2�
�
dx01dx

0
2: (20)

Note that, if B ≠ 0, we can rewrite Eq. (20) to read

u�x; zout� �
�

k
i2πB

�
d ∕ 2

exp
�
ik
2B

�D − 1�x2
�ZZ

∞

−∞

u�x0; zin�

× exp
�
ik
2B

�A − 1�x02
�

× exp
�
ik
2B

�x02 − 2x0 · x� x2�
�
dx01dx

0
2: (21)

The expression under the integral in Eq. (21) can be inter-
preted as first propagating the input field through a thin lens
with focal distance f 1 � B ∕ �1 − A� followed by propagation
over a distance B in free space. The exponential that we fac-
tored out corresponds to propagation through a second thin
lens with focal distance f 2 � B ∕ �1 − D�. In the following, we
show how this decomposition can be used to solve the integral
equation Eq. (20) using our coordinate transforms from
Theorem 1. But first we restate the interpretation of the

diffraction integral Eq. (21) in terms of thin lenses and free
space in the context of decompositions of ray transfer ma-
trices. To do so, we consider a nonimaging first-order optical
system, i.e., B ≠ 0. Then the system is equivalent to a system
consisting of a thin lens L1 with focal length f 1, propagation in
free space over the distance B, and a second thin lens L2 with
focal distance f 2; see [25]. Since a thin lens with focal distance
f is described by a ray transfer matrix with A � D � 1,
C � −1 ∕ f , and B � 0, the focal distances f 1 and f 2 are related
to the components of the ray transfer matrix of the original
system through the relation

�
A B
C D

�
�
�

1 0
− 1

f 1
1

�
|������{z������}
second lens

�
1 B
0 1

�
|����{z����}
free space

�
1 0
− 1

f 1
1

�
|������{z������}

first lens

: (22)

Carrying out the matrix multiplication on the right-hand side
of Eq. (22) and comparing terms, we recover the reciprocal
focal distances given by

1
f 1

� 1 − A
B

;
1
f 2

� 1 − D
B

:

In the remainder of this paper, we will refer to a system cor-
responding to the minimal optical decomposition Eq. (22) of
a ray transfer matrix as the associated canonical optical
system.

With the minimal optical decomposition Eq. (22) at hand,
we reduced the task of propagating a Gaussian-apodized para-
xial beam through a nonimaging first-order optical system,
i.e., solving the integral equation Eq. (20), to the two tasks
of propagation through thin lenses and free space. The com-
plex coordinate transforms and Theorem 1 provide an elegant
framework for the free-space component, while the effects of
a thin lens can be described efficiently using the ABCD laws
for the complex amplitude and beam parameter of a Gaussian
beam. For completeness we recall that the CBP of a Gaussian
qout in a transverse plane immediately behind an ABCD system
is given in terms of the new CBP qin in a transverse plane
immediately before the system by the formula

1
qout

� C � D ∕ qin
A� B ∕ qin

: (23)

Analogously, the amplitude of the Gaussian is modified
according to

Aout �
Ain

�A� B ∕ qin�d ∕ 2
: (24)

B. Propagation in Canonical First-Order Optical
Systems
We consider a canonical optical system associated with the
ray transfer matrix of a first-order optical system for which
B ≠ 0. To propagate the beam through the system using
the ABCD frame work, we introduce the planes P0 �
f�x; y; z�jz � z0g and P1 � f�x; y; z�jz � z1g right in front
and behind the first lens. Similarly, we define the planes
P2 � f�x; y; z�jz � z2 � z1 � Bg and P3 � f�x; y; z�jz � z3g
right in front and behind the first lens; see the illustration
in Fig. 5.
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We start with a Gaussian-apodized solution to the paraxial
equation Eq. (1) given by

v�x; z0� �
1�

1� z0
q0

�
d ∕ 2 exp

�
ikx2

2q0

�
u�x; z0� (25)

immediately before the lens L1. After passing through the lens,
we obtain the modified solution

v�x; z1� �
1�

1� z0
q0

�
d ∕ 2 exp

�
ikx2

2q1

�
u�x; z0�; (26)

where the CBP q1 is given by the ABCD law for a thin lens as

1
q1

� 1
q0

−
1
f 1

� 1
q0

� A − 1
B

: (27)

Next, we apply Theorem 1 to propagate the expression
in Eq. (26) over a distance B. We obtain at z2 � z1 � B the
solution

v�x; z2� �

�
1� z0

q1

�
d ∕ 2�

1� z0
q0

�
d ∕ 2

1�
1� z0�B

q1

�
d ∕ 2 exp

�
ikx2

2�q1 � B�

�

× u
�

x
1� B ∕ q1

;
z0 � B

1� B ∕ q1

�
: (28)

Finally, we use the ABCD law again to account for the effects
of the lens L2 and obtain

v�x; z3� �

�
1� z0

q1

�
d ∕ 2�

1� z0
q0

�
d ∕ 2

1�
1� z0�B

q1

�
d ∕ 2 exp

�
ikx2

2q3

�

× u
�

x
1� B ∕ q1

;
z0 � B

1� B ∕ q1

�
; (29)

where the CBP transforms according to

1
q3

� 1
q1 � B

� D − 1
B

� �D − 1�
B

� �B − q0 � Aq0�
�B2 � Aq0B�

� Cq0 � D
Aq0 � B

:

�30�

We note that an analogous form of Eq. (29) that also allows
for misalignment has previously been derived by Bandres and
Guizar-Sicairos based on the paraxial group; see Eq. (15)
of [33].

C. Main Result
After rewriting 1� B ∕ q1 � A� B ∕ q0, we obtain the following
result from the above observations.

Theorem 2. Let u�x; z� be a solution of the paraxial
equation

−i
∂u
∂z

� 1
2k

∇2
xu

for d � 1, 2 transverse dimensions. Suppose that the input to a
nonimaging first-order optical system is given in the trans-
verse plane z � 0 immediately in front of the system by

v�x; 0� � u�x; 0� exp
�
ikx2

2qin

�
:

Then the output in the z � zout plane immediately behind the
optical system is given by

v�x; zout� �
1�

A� B
qin

�
d ∕ 2 exp

�
ikx2

2qout

�

× u
�

x
A� B ∕ qin

;
B

A� B ∕ qin

�
;

where the CBP is given by

1
qout

� Cqin � D
Aqin � B

;

respectively. In particular, v is a solution to the integral
equation

v�x; zout� �
�

k
i2πB

�
d ∕ 2
Z
Rd

u�x0; 0�

× exp
�
ik
2B

�Ax02 − 2x0 · x� Dx2�
�
dx0:

It is noteworthy that, as in Theorem 1, the product structure
from the input is preserved during propagation in the case of
Theorem 2 as well. For a given paraxial beam, introducing a
Gaussian apodization in the initial conditions results in a
solution that is the product of the Gaussian solution to the
first-order system and the nonapodized beam with complex
arguments determined in this case by the coordinate trans-
forms for the free-space propagation distance B and the first
thin lens in the canonical optical decomposition. Moreover, it
should be emphasized that the above methods and the result
in Theorem 2 apply even to complex ABCD matrices.

D. Examples
In this section we derive analytical expressions for some
important types of apodized nondiffracting beams such as
Bessel–Gauss and Airy–Gauss beams to illustrate the effec-
tiveness of our method.

1. Airy–Gauss Beams
We consider the paraxial wave equation Eq. (1) in the case
of one transverse dimension d � 1 and denote by Ai the
well-known Airy function; see for example [34]. Following
Bandres and Gutiérrez-Vega (see [15]), we start with the initial
conditions

u�x; 0� � exp
�
S3i
3

� S�δ� x�i
κ

�
Ai
�
δ� x
κ

�
; (31)

where κ, δ, S ∈ C. We can check that a solution is given by an
Airy beam of the form
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u�x; z� � exp

0
BBBBBBBB@

�
S� z

2κ2k

�
3
i

3
�

�
S� z

2κ2k

�0@δ� x −
z

�
2S� z

2κ2k

�
2κk

1
Ai

κ

1
CCCCCCCCA

× Ai

0
@δ� x

κ
−

z
�
2S� z

2κ2k

�
2κ2k

1
A: (32)

We return to the case of an Airy–Gauss beam in one trans-
verse dimension and its propagation through a first-order op-
tical system; see [15]. Quite generally we can now determine
the analytical form of the Airy–Gauss field after propagation
through a nonimaging first-order optical system described by
an ABCD matrix with B ≠ 0 as follows. Applying Theorem 2 to
the Airy beam solution in Eq. (32), we obtain immediately the
solution

u�x;zout��exp

0
@
�
S� B

2κ2k�A�B∕ q0�

�
3
i

3

1
A

×exp

0
BBBBBBBB@

�
S� B

2κ2k

�0@δ�A�B∕ q0��x−
B

�
2S� B

2κ2k�A�B∕ q0�

�
2κk

1
Ai

κ�A�B∕ q0�

1
CCCCCCCCA

×Ai

0
@δ�A�B∕ q0��x

κ�A�B∕ q0�
−

B
�
2S� B

2κ2k�A�B∕ q0�

�
2κ2k�A�B∕ q0�

1
A

×
1������������������

1�B∕ q1
p exp

�
ikx2

2
Cq0�D
Aq0�B

�
; (33)

which is the Airy–Gauss beam described by Bandres and
Gutiérrez-Vega in [15].

2. Bessel–Gauss Beams
We start again with a Bessel beam that is an exact solution to
the paraxial equationEq. (1) in free space. Recall that, ford � 2
and x � �x; y�, a Bessel beam is given by Eq. (16). We denote
again by Jn the Bessel function of the first kind of integer order
n, θ � tan−1�y ∕ x� the azimuthal angle in cylinder coordinates,
and q0 � q�0� is the CBP. Thus, for a Bessel–Gauss input

v�x; 0� � 1
1� z0

q0

exp
�
ik�x2 � y2�

2q0

�

× Jn

�
α

�����������������
x2 � y2

q �
exp�inθ�;

immediately before the first lens L1, it follows from Theorem 2
that, in the z � zout plane immediately behind the second lens
L2 of the canonical system, the beam is of the form

v�x; zout� �
1

A� B
q0

exp
�
ik�x2 � y2�

2
Cq0 � D
Aq0 � B

�

× Jn

 
α

�����������������
x2 � y2

p
A� B

q0

!
exp�inθ� exp

0
@− iα2B

2k
�
A� B

q0

�
1
A:
(34)

Note that we derived the expression in Eq. (34) without resol-
ving to explicit integration of the Collins diffraction integral.
This latter route was investigated by Belafhal and Dalil-
Essakali in [19] andMei et al. in [20]. Unfortunately, the expres-
sion derived for a Bessel–Gauss beam in Eq. (12) in [19] seems
to be compromised by a typographical error. Themore general
result for a Bessel–Gauss beam with an annular aperture,
which is discussed in [20], reduces to the Bessel–Gauss case
as the aperture width increases without bounds. This limiting
case is investigated in Eq. (13) in [20], and the derived expres-
sion is equivalent to the one inEq. (34) of the present paper. It is
worthwhile to reemphasize at this point the efficiency and ele-
gance of the approach described in this paper. Not only do we
avoid the explicit integration of the Collins formula, but the
framework developed in Sections 2 and 3 shows clearly the
propagation behavior of Gaussian-apodized paraxial wave in
terms of the complex amplitude and CBP of a Gaussian beam
and the rescaled paraxial wave component with complex
arguments. These are important quantities in optics, electro-
magnetics, and physics and are fundamental for powerful ana-
lytical methods such as ray transfer matrices and ABCD laws.
Therefore, the expression in Eq. (34) uncovers elegantly the
effects of a Gaussian apodization on the propagation behavior
of aBessel–Gauss beam. The combined effects arising fromdif-
fraction and a first-order optical system are incorporated in
Eq. (34) in terms of ray transfer matrix components as well
as the complex amplitude, beam parameter, and coordinate
transforms.

4. CONCLUSION
We have developed in Section 2 an efficient method to obtain
analytic expressions for Gaussian-apodized analogs of solu-
tions to the paraxial wave equation in free space. In particular,
the framework is quite general and can also treat Gaussian
apodizations with nonzero phase curvature. This is a crucial
detail, which has been exploited in Section 3, where we have
used a minimal optical decomposition of nonimaging first-
order optical systems into two thin lenses and free space to
combine our coordinate transform approach with the ABCD
laws from ray transfer matrix analysis. With this approach we
have developed a powerful method to compute the output of a
nonimaging first-order optical system—provided that the in-
put is a Gaussian-apodized solution of the paraxial wave
equation—that avoids the explicit evaluation of the Collins dif-
fraction integral. This method should prove very useful, the-
oretically and experimentally, when one needs to propagate
special solutions of the paraxial wave equation. In particular,
our method can efficiently handle, for example, Bessel–Gauss
and Airy–Gauss beams. These beams have in recent years at-
tracted the attention of theorists and experimentalists alike,
and there is considerable interest in efficient methods to ana-
lyze the propagation dynamics of such beams. Aside from an
efficient method to obtain analytical expressions for solutions
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of the paraxial wave equation or the Collins diffraction inte-
gral, the results in Theorem 1 and Theorem 2 also reveal an
interesting underlying structure of an important class of solu-
tions. It is remarkable that the product structure arising from
the initial Gaussian apodization is preserved during propaga-
tion and the propagated beam is again given by a product of a
Gaussian solution and a scaled version of the nonapodized
paraxial solution with complex arguments. This is a striking
characteristic of the methods presented in this paper, which is
made even more prominent by the fact that they not only pre-
serve and clearly exhibit this product structure but that they
also elegantly relate the principal effects arising from diffrac-
tion (or possibly anomalous dispersion) and propagation
through a nonimaging first-order optical system to the com-
plex amplitude and CBP as well as a complex scaling of
the arguments of the paraxial solution.

To expand the possible applications of the methods pre-
sented in this paper, we are planning to extend the current
framework to include a simultaneous treatment of the tempor-
al and transverse spatial dimensions. Therefore, we expect
this work to be of interest not only for linear beams but even
in the case of temporally modulated pulses and possibly
weakly nonlinear media.
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