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Computation of quasi-discrete Hankel transforms
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The method originally proposed by Yu et al. [Opt. Lett. 23, 409 (1998)] for evaluating the zero-order Hankel
transform is generalized to high-order Hankel transforms. Since the method preserves the discrete form of
the Parseval theorem, it is particularly suitable for field propagation. A general algorithm for propagating an
input field through axially symmetric systems using the generalized method is given. The advantages and
the disadvantages of the method with respect to other typical methods are discussed. © 2004 Optical Society
of America
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1. INTRODUCTION
In propagation of optical beams through systems with cy-
lindrical symmetry, one encounters the need for the nu-
merical computation of the pth-order Hankel transform
(HT) and the inverse Hankel Transform (IHT):

f2~n! 5 2pE
0

`

f1~r !Jp~2pnr !rdr, (1a)

f1~r ! 5 2pE
0

`

f2~n!Jp~2prn!ndn, (1b)

where Jp is the pth-order Bessel function of the first kind,
r is the radial coordinate, and n is the spatial frequency.
Integrals (1) are especially difficult to compute because of
the oscillatory behavior of the Bessel function and the in-
finite length of the interval. Since the seminal work by
Siegman in 1977,1 a number of algorithms for the numeri-
cal evaluation of the HT have been reported in the litera-
ture, for both zero-order HTs2–11 and high-order HTs.12–21

Unfortunately, the performance of a method for comput-
ing the HT is highly dependent on the function to be
transformed, and thus it is difficult to determine the op-
timal algorithm for a given function. In optics, we often
deal with problems where the HT and the IHT need to be
computed thousands of times starting from a known ana-
lytical expression for the input function. In this case, an
efficient and fast numerical HT algorithm is needed. A
useful numerical evaluation of methods for calculating
HTs was provided recently by Markham and Conchello.11

In 1998, Yu et al.10 developed a zero-order quasi-
discrete HT method that approximates the input function
by a Fourier–Bessel series over a finite integration inter-
val. This led to a symmetric transformation matrix for
the HT and the IHT that satisfies the discrete form of the
Parseval theorem. Since energy conservation holds after
successive applications of the HT and the IHT, this
method has considerable application in iterative pro-
cesses. The Yu method was not included by Markham
1084-7529/2004/010053-06$15.00 ©
and Conchello in their analysis11; however, we have found
tangible advantages of the Yu method over other typical
methods.

The purpose of this work is twofold. First, we present
an algorithm that extends the zero-order HT method of
Yu10 to higher orders. We will denote this generalized
method as the pth-order quasi-discrete HT (pQDHT).
Second, we show the application of the pQDHT method to
the field propagation through axially symmetric systems.
The advantages and the disadvantages of the pQDHT
method with respect to other common methods are dis-
cussed.

2. DERIVATION OF THE METHOD
To derive the algorithm, we first assume that the space
domain f1(r) extends over a limited region 0 < r < R.
This follows from the fact that the functions f1 represent-
ing physical fields are actually zero outside a disk whose
radius is conveniently chosen equal to R. Thus, from a
physical point of view, this assumption is reasonable;
from a computational point of view, it is necessary. Since
the HT and the IHT have indeed the same mathematical
form [see Eqs. (1)], it is reasonable to assume that the fre-
quency domain f2(n) is distributed over a limited band 0
< n < V as well. Physically, this means that the space–
bandwidth product RV of the transform remains finite, as
required by numerical limitations. As pointed out by
Siegman,1 the evaluation of Eqs. (1) in a finite range in-
stead of the actual limits (0, `) is an inherent source of
error in the computation of the HT and the IHT when nu-
merical techniques are used. Therefore we have that

f1~r > R ! 5 0, f2~n > V ! 5 0, (2)

where R and V are the truncated radii of the spatial vari-
able and the frequency variable, respectively.

The functions f1(r) and f2(n) may be expanded in
terms of the pth-order Bessel series,22
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f~r ! 5 (
m51

`

cpmJpS apm

r

a D , 0 < r < a, (3)

where apm is the mth root of the pth Bessel function and
the coefficients cpm are determined with

cpm 5
1

a2Jp11
2 ~apm!

E
0

a

f~r !JpS apm

r

a D rdr. (4)

If we evaluate the radius r at values apn /(2pV) and
the frequency n at apm /(2pR) and replace ` with a finite
number N, Eqs. (1) are approximated to some level of ac-
curacy by the discrete sums

f2S apm

2pR D 5
1

pV 2 (
n51

N f1(apn /~2pV !)

Jp11
2 ~apn!

JpS apnapm

S D ,

(5a)

f1S apn

2pV D 5
1

pR2 (
m51

N f2(apm /~2pR !)

Jp11
2 ~apm!

JpS apnapm

S D ,

(5b)

where S [ 2pRV. Equations (5) can be rewritten in a
symmetric form by defining the vectors

F2~m ! 5 f2S apm

2pR D uJp11~apm!u21V, (6a)

F1~n ! 5 f1S apn

2pV D uJp11~apn!u21R; (6b)

thus Eqs. (5) reduce to

F2~m ! 5 (
n51

N

TmnF1~n !, (7a)

F1~n ! 5 (
m51

N

TnmF2~m !, (7b)

where

Tmn 5
2Jp~apnapm /S !

uJp11~apn!uuJp11~apm!uS
(8)

defines the elements of an N 3 N transformation matrix
T. From Eqs. (2) and (6), it is evident that F1(n . N)
5 F2(m . N) 5 0 for S > ap,N11 ; thus only the first
N 3 N elements in the matrix T are relevant.

There are some mathematical properties of the trans-
formation matrix T to be discussed here. First, note that
T is a real square symmetric matrix, and thus T is equal
to its transpose TT. To preserve self-consistency, the ma-
trix T needs to be unitary, which means that an input
function returns to itself after one HT and one IHT, i.e.,
TT 5 IN , where IN is the identity matrix. Now, we see
in Eq. (8) that T is, in fact, a function of the continuous
parameter S; thus it is still necessary to determine the
optimum S that satisfies the equation T2(S) 2 IN 5 0.
In this respect, Yu et al.10 found numerically for the zero-
order HT that if S 5 a0,N11 , then T is very close to being
a unitary matrix and gets closer as N increases. We have
corroborated that this result holds for the pth-order HTs,
i.e., S 5 ap,N11 .
Since the determinant of unitary matrices is indeed
unity, it is possible to use this result to verify the accuracy
of the matrix T(ap,N11) for a given N. By using numeri-
cal evaluation, we have verified that udet@T(ap,N11)#
2 1u , 1028, 1029, and 10211 for N 5 50, 200, and 500,
respectively. These tolerances are enough for practical
purposes and can be used as criteria to orient the reader
in the number of sampling points N. If a more accurate
matrix T is desired, it could be improved (once N is de-
fined) by finding the root of the nonlinear equation
det@T(S)# 2 1 5 0 in the neighborhood of S 5 ap,N11 .
Note that because T is a real unitary matrix, its rows
(and columns) form a set of orthonormal vectors that con-
stitute a basis for the radial and frequency N-dimensional
spaces.22

An important feature of the pQDHT method is that it is
energy preserving, i.e., satisfies the Parseval theorem:

E
0

`

u f1~r !u2rdr 5 E
0

`

u f2~n!u2ndn. (9)

To prove this, we substitute Eqs. (5) into the last equa-
tion, and after some algebra we arrive at

(
m51

N u f2(apm /~2pR !)u2

2p2R2Jp11
2 ~apm!

5 (
n51

N u f1(apn /~2pV !)u2

2p2V2Jp11
2 ~apn!

,

(10)

which can be rewritten in the discrete form of the Parse-
val theorem by using Eqs. (6), namely,

2

S2 (
n51

N

uF1~n !u2 5
2

S2 (
m51

N

uF2~m !u2. (11)

The conservation of energy can also be inferred from
the fact that the norm of an input vector F1 that is lin-
early mapped onto an output vector F2 is invariant when
the transformation matrix T is unitary.

3. NUMERICAL TESTS
To test the numerical accuracy of the pQDHT method, we
consider two examples. All codes were written in Matlab
software, mainly because of the existence of a wealth of
built-in mathematical functions.

For the first example, we choose the sinc function
f1(r) 5 sin(2pgr)/2pgr, whose analytical pth-order HT is
given by

f2~n! 5
np cos~ pp/2!

2pgAg2 2 v2~g 1 Ag2 2 v2!p
, 0 < n , g

(12a)

5
sin@ p arcsin~g/n!#

2pgAn2 2 g2
, n . g. (12b)

This function was also considered in Ref. 14 and pro-
vides a useful benchmark for our routines. Figures 1(a)
and 1(c) depict the analytical and computed HTs of the
sinc function with g 5 5 for orders p 5 1 and 4. We
used N 5 256 points to sample the radius in the interval
(0, 3). We can appreciate that the calculated values are
quite close to the exact values. Since we must truncate



M. Guizar-Sicairos and J. C. Gutiérrez-Vega Vol. 21, No. 1 /January 2004 /J. Opt. Soc. Am. A 55
the input function, the calculated transform suffers from
the Gibbs phenomenon, particularly near the discontinu-
ity; however, it can be reduced with proper windowing
(apodizing). Now, a suitable measure of accuracy of the
numerical method is provided by the dynamic error

e~n! 5 20 log10F u f2~n! 2 f2* ~n!u

maxu f2* ~n!u
G . (13)

This error function compares the difference between
exact @ f2(n)# and estimated @ f2* (n)# transform samples
with the maximum value of the HT. The dynamic error
is given in decibels and plotted on a [0, 2120 dB] scale in
subplots 1(b) and 1(d). The error is greatest around n
5 g, i.e., near the point where the transform exhibits the
discontinuity. Beyond this point, the error remains be-
low 260 dB.

Successive application of the HT and the IHT to the in-
put function f1 will presumably return the same function.
We quantify the approximation error in the numerical
computation by taking the average absolute difference be-
tween the exact @ f1(r)# and retrieved @ f1* (r)# functions:

Fig. 1. Exact and computed Hankel transforms of the sinc func-
tion with g 5 5 for (a) p 5 1 and (c) p 5 4. Solid curves denote
exact transforms, and crosses denote the calculated transforms.
Dynamic errors are shown in (b) and (d).
e1 5
1

N (
j51

N

u f1 2 f1* u. (14)

For the fourth-order HT and IHT of the sinc function,
we obtain e1 ; 10210 (N 5 100), e1 ; 10212 (N 5 200),
and e1 ; 10214 (N > 300) over the whole range of the ra-
dial variable.

In the second example, we compare numerically the
pQDHT with respect to the well-assessed procedure of the
quasi-fast Hankel transform (QFHT) introduced by
Siegman.1 To this end, we choose as test function the
generalized version of the top-hat function, namely, f1(r)
5 rp@H(r) 2 H(r 2 a)# with a . 0, where H(r) is the
step function H(r) 5 1 for r > 0 and H(r) 5 0 else-
where, whose analytical pth-order HT is given by

f2~n! 5 ap11
Jp11~2pan!

n
. (15)

For the calculations, we take p 5 4 and a 5 1 and
sample the function f1(r) in the range r P (0, 2) for N
5 512 and 1024. The pQDHT requires the selection of
two free parameters (R and N), whereas the QFHT needs
the selection of four free parameters (typically, R, N, V,
and K2 5 minimum allowed number of ‘‘points per cycle’’
in the frequency space). Since the QFHT has an inher-
ent problem of lower-end correction, it requires a careful
selection of the parameters1; thus, to minimize the miss-
ing contribution due to this problem, we have chosen V
5 20 and K2 5 2.

The errors and the CPU times (two HT calculations) for
the pQDHT and the QFHT are compared in Table 1. The
error e2 corresponds to the average absolute difference be-
tween the exact @ f2(n)# and computed @ f2* (n)# trans-
formed functions, and the error e1 is computed with Eq.
(14). For the retrieved function f1* (r), the results ob-
tained with the pQDFT are several orders of magnitude
more precise than those produced by the standard QFHT.
Conversely, the QFHT is faster, but it has lower accuracy
for the calculated points. This circumstance can be ex-
plained by considering that one of the main advantages of
the QFHT and of similar algorithms based on the fast
Fourier transform (FFT) is that they require the storage
of the kernel in the form of a vector instead of a square
matrix. The number of complex multiplications for a
QFHT is 4N log2 2N 1 2N (see Refs. 2 and 7), and the
number of real multiplications for a pQDHT is N2. Be-
cause one complex multiplication is almost equal to three
real multiplications, it is obvious that the pQDHT is more
efficient than the QFHT for the same accuracy.

Table 1. Comparison of the pQDHT and the QFTT

N e2 e1 CPU Time (s) V

pQDHT
512 1.3 3 1023 2.2 3 10213 0.028 128.7

1024 4.8 3 1025 2.7 3 10214 0.071 256.7
QFHT

512 3.8 3 1023 1.3 3 1022 0.015 20
1024 1.9 3 1024 6.4 3 1023 0.025 20
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In Fig. 2(a), we show the analytical @ f2(n)# and com-
puted @ f2* (n)# transforms in the interval n P @0, 10#.
The behavior of the retrieved functions f1* (r) is depicted
in Fig. 2(b). Note that the plot of f1* (r) calculated with
the pQDHT coincides with the exact function f1(r). Con-
versely, the observed Gibbs-phenomenon ripples in f1* (r)
computed with the QFHT result from the lower finite
truncation in the transform domain (V 5 20).

4. WAVE PROPAGATION WITH USE OF THE
pth-ORDER QUASI-DISCRETE HANKEL
TRANSFORM
In this section, we apply the pQDHT method to demon-
strate its effectiveness for studying the propagation
through axially symmetric systems. The general algo-
rithm for propagating an input field u0(r) with the
pQDHT method is summarized below. For clarity, over-
barred variables denote column vectors. The operators ^

and � denote element-by-element multiplication and di-
vision of vectors, respectively, and * denotes the usual
matrix product.

1. Choose the input parameters: p (order), R (maxi-
mum physical radius), and N (number of points).

2. Read and store the vector of roots of the pth-order
Bessel function ā 5 @a1 ,...,aN# and the (N 1 1)th root
aN11 . See Refs. 23 and 24.

3. Calculate the radius vector r̄ 5 āR/aN11 , the ra-
dial frequency vector v̄ 5 ā/(2pR), and the limiting fre-
quency V 5 aN11 /(2pR).

4. Generate the symmetric N 3 N transformation
matrix T [Eq. (8)] and the column vector J̄
5 uJp11(ā)u/R.

5. Choose the propagating parameters: zmax (propa-
gation distance), nz (number of steps), Dz 5 zmax /(nz) (in-
crement), and l (wavelength).

Fig. 2. (a) Analytical @ f2(n)# and computed @ f2* (n)# transforms,
(b) exact and retrieved functions f1* (r). Both plots correspond to
N 5 1024 points sampled according to the criteria of the pQDHT
and the QFHT.
6. Calculate the propagator25

prop 5 exp~i2pDzAl22 2 n̄2!. (16)
7. Evaluate the input field ū0(r).
8. Calculate the HT of the input field: H̄

5 T * @ ū0(r) � J̄#.
9. Propagating loop:

for j 5 1,...,nz;
Propagation in Fourier space:

H̄ 5 H̄ ^ prop.

Calculate and store the spatial field at this step:

ū j 5 T * ~H̄ � J̄ !

end
Note that the matrix T is computed only once when the

algorithm is applied to propagation and the HT is reduced
to a matrix–vector multiplication.

To see how the pQDHT method works in practice, we
consider the focusing evolution of a trucated fourth-order
Bessel beam u(r) 5 J4(ktr)exp(i4f 1 ikzz). The beam is
normally incident on a circular lens with radius R
5 4 mm and focal distance f 5 0.5 m that is located at
plane z 5 0. The transverse and longitudinal wave
numbers satisfy the relation k2 5 (2p/l)2 5 kt

2 1 kz
2.

For pth-order Bessel beams, it is known that the image in

Fig. 3. Focusing evolution of a fourth-order Bessel beam along
the plane (r, z). Physical parameters are chosen to produce a
circular ring of radius 1 mm in the focal plane (at z 5 0.5 m).

Fig. 4. Transverse radial intensity of the focused Bessel beam at
the focal plane.
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the focal plane corresponds to a circular ring of radius r
5 fkt /kz modulated by the angular spectrum A(f )
5 exp(ipf ).26 For an illumination at l 5 632.8 nm, we
have chosen kt 5 19858.32 m21 to ensure an image ring
with radius r 5 1 mm. The paraxial transmittance of
the lens is given by exp@2ikr2/(2f )#. The propagation of
the focused Bessel beam along the plane r –z is displayed
in Fig. 3. This spatial evolution was obtained by sam-
pling the radius at 256 points and calculating the field at
300 transverse planes evenly spaced through a length of
75 cm. All numerical calculations were completed within
7.11 s on a 1-GHz personal computer with 256-Mbyte
RAM. In Fig. 4, we show the radial intensity of the fo-
cusing Bessel beam at z 5 0.5 m. As expected, the plot
exhibits an intense peak corresponding to a circular ring
at the focal plane. The good agreement between these
results and results reported in Ref. 26 (obtained with two-
dimensional FFT-based algorithms) shows that the
pQDHT method is highly accurate, and it can thus be
used for studying the wave propagation through axially
symmetric systems.

5. CONCLUSIONS
In conclusion, we have proposed a discrete algorithm for
computing general integer-order HTs and IHTs for a
given input function. Our algorithm is a generalization
of the original zero-order HT method proposed recently by
Yu et al.10 In tests done with known transform pairs,
agreement between exact and computed transforms was
excellent. The main advantages and disadvantages of
the pQDHT method are summarized as follows:

• The pQDHT method does not need either to interpo-
late the set of data points or to use very large zero pad-
ding, as is usual in the popular backprojection and slice-
projection methods (BP-SP)5,8,12–15 and methods based on
the one-dimensional FFT through an exponential change
of variables (FT-EXP).1–3,19,20 In this way, the accuracy
of the method depends exclusively on the size of the trans-
formation matrix T and is not affected by the selection of
additional parameters or by the choice of interpolation
method, quadrature scheme, or resampling procedure.

• By construction, the pQDHT method is energy pre-
serving; i.e., the original field is retrieved after two suc-
cessive applications of the HT. Other known methods
(e.g., Refs. 1 and 8) have no simple retrieval expression.
This property makes the pQDHT method very useful, par-
ticularly when it is applied to propagation.

• The pQDHT method transforms complex inputs in
one step, contrary to the BP-SP and FT-EXP methods,
which typically deal with the real and imaginary contri-
butions separately (e.g., Refs. 4, 5, and 8).

• The computation of the transformation matrix T
may be time-consuming; however, tables and efficient al-
gorithms for computing the zeros of the Bessel functions
can be found in the numerical literature (see, e.g., Refs.
23 and 24). A text file with the first 3000 roots of the first
ten orders of the Bessel J function is available by writing
to the corresponding author. Moreover, the matrix T
needs to be computed only once in propagation applica-
tions.
We have shown how to apply the pQDHT method in op-
tical field propagation. Since the HT and the IHT are re-
duced to a simple matrix–vector multiplication, the algo-
rithm is very fast and efficient. The advantages outlined
above should make the pQDHT method valuable in opti-
cal beam propagation as well as other optical and nonop-
tical applications.
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